Show simple item record

dc.contributor.advisorDimitris Bertsimas.en_US
dc.contributor.authorHe, Liweien_US
dc.contributor.otherMassachusetts Institute of Technology. Computation for Design and Optimization Program.en_US
dc.date.accessioned2011-03-24T20:22:46Z
dc.date.available2011-03-24T20:22:46Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/61893
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2010.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 63-64).en_US
dc.description.abstractThis thesis aims to solve the periodic-reviewed inventory control problem in supply chain networks with uncertain demand so as to minimize the overall cost of the system over a fixed planning time horizon. In such problems, one seeks to optimally determine ordering quantities at different stages in time. We investigate the class of polynomial policies, where the control policy is directly parametrized polynomially in the observed uncertainties of previous stages. We use sum-of-square relaxations to reformulate the problem into a single semidefinite optimization problem for a specific polynomial degree. We consider both robust and stochastic approaches in order to address the uncertainties in demand. In extensive numerical studies, we find that polynomial policies exhibit better performance over basestock policies across a variety of networks and demand distributions under the mean and standard deviation criteria. However, when the uncertainty set turns out to be larger than planned, basestock policies start outperforming polynomial policies. Comparing the policies obtained under the robust and stochastic frameworks, we find that they are comparable in the average performance criterion, but the robust approach leads to better tail behavior and lower standard deviation in general.en_US
dc.description.statementofresponsibilityby Liwei He.en_US
dc.format.extent64 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectComputation for Design and Optimization Program.en_US
dc.titlePolynomial policies in supply chain networksen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computation for Design and Optimization Program
dc.identifier.oclc706804893en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record