MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Polynomial policies in supply chain networks

Author(s)
He, Liwei
Thumbnail
DownloadFull printable version (3.456Mb)
Other Contributors
Massachusetts Institute of Technology. Computation for Design and Optimization Program.
Advisor
Dimitris Bertsimas.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis aims to solve the periodic-reviewed inventory control problem in supply chain networks with uncertain demand so as to minimize the overall cost of the system over a fixed planning time horizon. In such problems, one seeks to optimally determine ordering quantities at different stages in time. We investigate the class of polynomial policies, where the control policy is directly parametrized polynomially in the observed uncertainties of previous stages. We use sum-of-square relaxations to reformulate the problem into a single semidefinite optimization problem for a specific polynomial degree. We consider both robust and stochastic approaches in order to address the uncertainties in demand. In extensive numerical studies, we find that polynomial policies exhibit better performance over basestock policies across a variety of networks and demand distributions under the mean and standard deviation criteria. However, when the uncertainty set turns out to be larger than planned, basestock policies start outperforming polynomial policies. Comparing the policies obtained under the robust and stochastic frameworks, we find that they are comparable in the average performance criterion, but the robust approach leads to better tail behavior and lower standard deviation in general.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2010.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 63-64).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/61893
Department
Massachusetts Institute of Technology. Computation for Design and Optimization Program
Publisher
Massachusetts Institute of Technology
Keywords
Computation for Design and Optimization Program.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.