Show simple item record

dc.contributor.authorMukherjee, Abhishek
dc.contributor.authorSantamaría‐García, Vivian J
dc.contributor.authorWlodarczyk, Damian
dc.contributor.authorSomakumar, Ajeesh K
dc.contributor.authorSybilski, Piotr
dc.contributor.authorSiebenaller, Ryan
dc.contributor.authorRowe, Emmanuel
dc.contributor.authorNarayanan, Saranya
dc.contributor.authorSusner, Michael A
dc.contributor.authorLozano‐Sanchez, L Marcelo
dc.contributor.authorSuchocki, Andrzej
dc.contributor.authorPalma, Julio L
dc.contributor.authorBoriskina, Svetlana V
dc.date.accessioned2025-10-16T14:47:29Z
dc.date.available2025-10-16T14:47:29Z
dc.date.issued2025-06-27
dc.identifier.urihttps://hdl.handle.net/1721.1/163180
dc.description.abstractZinc phosphorus trisulfide (ZnPS 3 ), a promising material for photocatalysisand energy storage, is shown in this study to exhibit remarkable stabilityunder extreme conditions. Its optical and structural properties are exploredunder high pressure and cryogenic temperatures using photoluminescence(PL) spectroscopy, Raman scattering, and density functional theory (DFT). Theexperimental results identify a pressure-induced phase transition starting at6.75 GPa and stabilizing by 12.5 GPa, after which ZnPS 3 demonstrates robuststability across a broad pressure range up to 24.5 GPa. DFT calculationssupport these observations and further predict a semiconductor-to-semimetaltransition at 100 GPa, while PL measurements reveal defect-assisted emissionthat quench under pressure due to enhanced non-radiative recombination. Atcryogenic temperatures, PL quenching intensifies as non-radiative processesdominate, driven by a rising Grüneisen parameter and reduced phononpopulation. Cryogenic X-ray diffraction (XRD) also reveals a high meanthermal expansion coefficient (TEC) of (4.369 ± 0.393) × 10−5 K−1 , amongthe highest reported for 2D materials. This unique combination of tunableelectronic properties under low pressure and high thermal sensitivity makesZnPS3 a strong candidate for sensing applications in extreme environments.en_US
dc.language.isoen
dc.publisherWileyen_US
dc.relation.isversionofhttps://doi.org/10.1002/aelm.202500093en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceWileyen_US
dc.titleThermal and Dimensional Stability of Photocatalytic Material ZnPS3 Under Extreme Environmental Conditionsen_US
dc.typeArticleen_US
dc.identifier.citationA. Mukherjee, V. J. Santamaría-García, D. Wlodarczyk, et al. “ Thermal and Dimensional Stability of Photocatalytic Material ZnPS3 Under Extreme Environmental Conditions.” Adv. Electron. Mater. 11, no. 13 (2025): 11, 2500093.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.relation.journalAdvanced Electronic Materialsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2025-10-16T14:37:15Z
dspace.orderedauthorsMukherjee, A; Santamaría‐García, VJ; Wlodarczyk, D; Somakumar, AK; Sybilski, P; Siebenaller, R; Rowe, E; Narayanan, S; Susner, MA; Lozano‐Sanchez, LM; Suchocki, A; Palma, JL; Boriskina, SVen_US
dspace.date.submission2025-10-16T14:37:17Z
mit.journal.volume11en_US
mit.journal.issue13en_US
mit.licensePUBLISHER_CC


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record