MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Thermal and Dimensional Stability of Photocatalytic Material ZnPS3 Under Extreme Environmental Conditions

Author(s)
Mukherjee, Abhishek; Santamaría‐García, Vivian J; Wlodarczyk, Damian; Somakumar, Ajeesh K; Sybilski, Piotr; Siebenaller, Ryan; Rowe, Emmanuel; Narayanan, Saranya; Susner, Michael A; Lozano‐Sanchez, L Marcelo; Suchocki, Andrzej; Palma, Julio L; Boriskina, Svetlana V; ... Show more Show less
Thumbnail
DownloadSubmitted version (2.725Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Zinc phosphorus trisulfide (ZnPS 3 ), a promising material for photocatalysisand energy storage, is shown in this study to exhibit remarkable stabilityunder extreme conditions. Its optical and structural properties are exploredunder high pressure and cryogenic temperatures using photoluminescence(PL) spectroscopy, Raman scattering, and density functional theory (DFT). Theexperimental results identify a pressure-induced phase transition starting at6.75 GPa and stabilizing by 12.5 GPa, after which ZnPS 3 demonstrates robuststability across a broad pressure range up to 24.5 GPa. DFT calculationssupport these observations and further predict a semiconductor-to-semimetaltransition at 100 GPa, while PL measurements reveal defect-assisted emissionthat quench under pressure due to enhanced non-radiative recombination. Atcryogenic temperatures, PL quenching intensifies as non-radiative processesdominate, driven by a rising Grüneisen parameter and reduced phononpopulation. Cryogenic X-ray diffraction (XRD) also reveals a high meanthermal expansion coefficient (TEC) of (4.369 ± 0.393) × 10−5 K−1 , amongthe highest reported for 2D materials. This unique combination of tunableelectronic properties under low pressure and high thermal sensitivity makesZnPS3 a strong candidate for sensing applications in extreme environments.
Date issued
2025-06-27
URI
https://hdl.handle.net/1721.1/163180
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Advanced Electronic Materials
Publisher
Wiley
Citation
A. Mukherjee, V. J. Santamaría-García, D. Wlodarczyk, et al. “ Thermal and Dimensional Stability of Photocatalytic Material ZnPS3 Under Extreme Environmental Conditions.” Adv. Electron. Mater. 11, no. 13 (2025): 11, 2500093.
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.