MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Improved access to large medical databases for clinical research and quality improvement

Author(s)
Nigrin, Daniel J. (Daniel Joseph), 1965-
Thumbnail
DownloadFull printable version (2.936Mb)
Advisor
Isaac S. Kohane and Peter Szolovits.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Computerized medical databases are now commonplace in healthcare environments. Information is routinely stored for each clinical encounter, be it an inpatient, outpatient, telephone, or even computer-based interaction. In the past, the vast majority of this data concerned the demographic and financial details of the encounter; however, more and more clinically relevant content is now being collected. Along with this increased amount of available data has come promises of improve patient care, easier clinical research studies, and enhanced efficiency and quality of healthcare institutions. In part, these promises have been kept; there are examples in the literature and in real-world medical environments in which care has improved through the use of data stores. The ease by which this information is accessed, displayed, and interpreted remains a significant problem, however. In addition, current data retrieval methods do not foster user "exploration" of the data, and thus limit its potential. The specific aim of this thesis has been the development of a new computer application ("Goldminer"), which provides for enhanced data retrieval, interpretation, and analysis by authorized personnel at large medical institutions. This application also provides for patient data privacy; unique patient identifiers are not disclosed in information requests, and routine logs of Goldminer's usage are kept for analysis by hospital administrative staff. The methods used in this work included the integration and mapping of disparate data sources to one central database, followed by the implementation of a group of simple "atomic" queries, which insulate users from the underlying database complexity. These queries include both population-based and temporal predicates, and are combinable to allow for arbitrarily complex data retrieval. All data have personal identifiers removed before presentation to the user. Goldminer will be deployed within the hospital Intranet as a web-based "point and click" tool, allowing for efficient data analysis and exploration by non-programming healthcare personnel.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Whitaker College of Health Sciences and Technology, 1999.
 
Includes bibliographical references (leaves 39-40).
 
Date issued
1999
URI
http://hdl.handle.net/1721.1/9740
Department
Whitaker College of Health Sciences and Technology; Harvard University--MIT Division of Health Sciences and Technology
Publisher
Massachusetts Institute of Technology
Keywords
Whitaker College of Health Sciences and Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.