dc.contributor.author | Trigo Neri Tabuada, Goncalo Jo | |
dc.contributor.author | Marcolli, Matilde | |
dc.date.accessioned | 2015-01-30T19:40:22Z | |
dc.date.available | 2015-01-30T19:40:22Z | |
dc.date.issued | 2014-07 | |
dc.date.submitted | 2014-01 | |
dc.identifier.issn | 1609-4514 | |
dc.identifier.issn | 1609-3321 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/93242 | |
dc.description.abstract | In this article one extends the classical theory of (intermediate) Jacobians to the “noncommutative world”. Concretely, one constructs a Q-linear additive Jacobian functor N → J(N) from the category of noncommutative Chow motives to the category of abelian varieties up to isogeny, with the following properties: (i) the first de Rham cohomology group of J(N) agrees with the subspace of the odd periodic cyclic homology of N which is generated by algebraic curves; (ii) the abelian variety J(perf[subscript dg](X)) (associated to the derived dg category perf[subscript dg](X) of a smooth projective k-scheme X) identifies with the product of all the intermediate algebraic Jacobians of X. As an application, every semi-orthogonal decomposition of the derived category perf(X) gives rise to a decomposition of the intermediate algebraic Jacobians of X. | en_US |
dc.description.sponsorship | NEC Corporation (Award 2742738) | en_US |
dc.description.sponsorship | Portuguese Science and Technology Foundation (PEst-OE/MAT/UI0297/2011) | en_US |
dc.language.iso | en_US | |
dc.publisher | Independent University of Moscow | en_US |
dc.relation.isversionof | http://www.mathjournals.org/mmj/2014-014-003/2014-014-003-006.pdf | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | Jacobians of Noncommutative Motives | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Marcolli, Matilde, and Goncalo Tabuada. "Jacobians of Noncommutative Motives." Moscow Mathematical Journal, Volume 14, Number 3 (July-September 2014), 577-594. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.mitauthor | Trigo Neri Tabuada, Goncalo Jo | en_US |
dc.relation.journal | Moscow Mathematical Journal | en_US |
dc.eprint.version | Original manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dspace.orderedauthors | Marcolli, Matilde; Tabuada, Goncalo | en_US |
dc.identifier.orcid | https://orcid.org/0000-0001-5558-9236 | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |