Show simple item record

dc.contributor.advisorTimothy G. Gutowski and Jason Jay.en_US
dc.contributor.authorMiller, Adam J. (Adam James)en_US
dc.contributor.otherLeaders for Global Operations Program.en_US
dc.date.accessioned2014-10-08T15:27:05Z
dc.date.available2014-10-08T15:27:05Z
dc.date.copyright2014en_US
dc.date.issued2014en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/90754
dc.descriptionThesis: M.B.A., Massachusetts Institute of Technology, Sloan School of Management, 2014. In conjunction with the Leaders for Global Operations Program at MIT.en_US
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2014. In conjunction with the Leaders for Global Operations Program at MIT.en_US
dc.description29en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 72-74).en_US
dc.description.abstractGeneral Motors (GM) is one of the world's largest automobile manufacturing companies and does business in over 120 countries, requiring a complex operations network. Operating with a focus on environmental impact has become a strategic pillar within the company, both in its products and in its supply chain. Specifically, the GM global logistics organization is driving toward greater emissions visibility and the identification of carbon dioxide reduction opportunities within its network. Key objectives of this thesis work include creating business tools and processes to record global logistics emissions data, which will allow GM to more accurately report logistics emissions and reduction efforts to shareholders, track network emissions over time, pinpoint carbon reduction opportunities that align with cost savings efforts, and understand and mitigate future risks to the business. The approach taken to address the above objectives unfolds into three distinct work streams: (1) implementation of industry-recognized methods and processes, (2) development of a global carbon footprint measurement model, and (3) emissions analysis of network change activities. Industry research and data analysis along with internal cost and network data were used to develop carbon measurement tools. These tools are capable of estimating mass emissions (tons C02) generated by logistics operations globally as well as the increase or decrease in mass emissions generated by individual network change events (e.g., changes in mode, mileage, shipment frequency, etc.). Furthermore, through close collaboration with logistics providers, GM fulfilled the necessary requirements to become an official shipper partner of the USEPA SmartWay program. Immediate benefits of the project work include using the resulting data for global reporting and benchmarking purposes, providing management with a new set of information that can be used to strengthen network change proposals, and tracking improvements in overall network emissions as well as the performance of individual providers. Long term benefits include stronger relationships with providers, reputational and governmental risk mitigation, and cost savings from increased fuel efficiency of operations.en_US
dc.description.statementofresponsibilityby Adam J. Miller.en_US
dc.format.extent79 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectSloan School of Management.en_US
dc.subjectMechanical Engineering.en_US
dc.subjectLeaders for Global Operations Program.en_US
dc.titleCarbon footprint measurement and analysis of a multi-modal logistics networken_US
dc.typeThesisen_US
dc.description.degreeM.B.A.en_US
dc.description.degreeS.M.en_US
dc.contributor.departmentLeaders for Global Operations Program at MITen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.contributor.departmentSloan School of Management
dc.identifier.oclc891369754en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record