Show simple item record

dc.contributor.authorEgusa, S.
dc.contributor.authorChocat, Noemie
dc.contributor.authorStolyarov, Alexander Mark
dc.contributor.authorFink, Yoel
dc.contributor.authorWang, Zheng
dc.contributor.authorRuff, Zachary
dc.contributor.authorShemuly, Dana
dc.contributor.authorSorin, Fabien
dc.contributor.authorRakich, Peter T.
dc.contributor.authorJoannopoulos, John
dc.date.accessioned2013-04-10T14:30:53Z
dc.date.available2013-04-10T14:30:53Z
dc.date.issued2010-07
dc.date.submitted2010-01
dc.identifier.issn1476-1122
dc.identifier.issn1476-4660
dc.identifier.urihttp://hdl.handle.net/1721.1/78317
dc.description.abstractFibre materials span a broad range of applications ranging from simple textile yarns to complex modern fibre-optic communication systems. Throughout their history, a key premise has remained essentially unchanged: fibres are static devices, incapable of controllably changing their properties over a wide range of frequencies. A number of approaches to realizing time-dependent variations in fibres have emerged, including refractive index modulation1, 2, 3, 4, nonlinear optical mechanisms in silica glass fibres5, 6, 7, 8 and electroactively modulated polymer fibres9. These approaches have been limited primarily because of the inert nature of traditional glassy fibre materials. Here we report the composition of a phase internal to a composite fibre structure that is simultaneously crystalline and non-centrosymmetric. A ferroelectric polymer layer of 30 μm thickness is spatially confined and electrically contacted by internal viscous electrodes and encapsulated in an insulating polymer cladding hundreds of micrometres in diameter. The structure is thermally drawn in its entirety from a macroscopic preform, yielding tens of metres of piezoelectric fibre. The fibres show a piezoelectric response and acoustic transduction from kilohertz to megahertz frequencies. A single-fibre electrically driven device containing a high-quality-factor Fabry–Perot optical resonator and a piezoelectric transducer is fabricated and measured.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Materials Research Science and Engineering Centers Program, award number DMR-0819762)en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency (Griggs)en_US
dc.description.sponsorshipUnited States. Army Research Office (Institute for Soldier Nanotechnologies, contract no. W911NF-07-D-0004)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/nmat2792en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceJoannopoulos via Chris Sherratten_US
dc.titleMultimaterial Piezoelectric Fibresen_US
dc.typeArticleen_US
dc.identifier.citationEgusa, S. et al. “Multimaterial Piezoelectric Fibres.” Nature Materials 9.8 (2010): 643–648. CrossRef. Web.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Soldier Nanotechnologiesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.approverJoannopoulos, John D.
dc.contributor.mitauthorJoannopoulos, John D.
dc.contributor.mitauthorWang, Z.
dc.contributor.mitauthorChocat, Noemie
dc.contributor.mitauthorRuff, Z. M.
dc.contributor.mitauthorStolyarov, Alexander Mark
dc.contributor.mitauthorShemuly, D.
dc.contributor.mitauthorSorin, F.
dc.contributor.mitauthorFink, Yoel
dc.contributor.mitauthorEgusa, S.
dc.contributor.mitauthorRakich, P. T.
dc.relation.journalNature Materialsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsEgusa, S.; Wang, Z.; Chocat, N.; Ruff, Z. M.; Stolyarov, A. M.; Shemuly, D.; Sorin, F.; Rakich, P. T.; Joannopoulos, J. D.; Fink, Y.en
dc.identifier.orcidhttps://orcid.org/0000-0001-9752-2283
dc.identifier.orcidhttps://orcid.org/0000-0002-7244-3682
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record