MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Efficient Message Passing Algorithm for Multi-Target Tracking

Author(s)
Chen, Zhexu (Michael); Chen, Lei; Cetin, Mujdat; Willsky, Alan S.
Thumbnail
DownloadWillsky_An efficient message.pdf (2.121Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We propose a new approach for multi-sensor multi-target tracking by constructing statistical models on graphs with continuous-valued nodes for target states and discrete-valued nodes for data association hypotheses. These graphical representations lead to message-passing algorithms for the fusion of data across time, sensor, and target that are radically different than algorithms such as those found in state-of-the-art multiple hypothesis tracking (MHT) algorithms. Important differences include: (a) our message-passing algorithms explicitly compute different probabilities and estimates than MHT algorithms; (b) our algorithms propagate information from future data about past hypotheses via messages backward in time (rather than doing this via extending track hypothesis trees forward in time); and (c) the combinatorial complexity of the problem is manifested in a different way, one in which particle-like, approximated, messages are propagated forward and backward in time (rather than hypotheses being enumerated and truncated over time). A side benefit of this structure is that it automatically provides smoothed target trajectories using future data. A major advantage is the potential for low-order polynomial (and linear in some cases) dependency on the length of the tracking interval N, in contrast with the exponential complexity in N for so-called N-scan algorithms. We provide experimental results that support this potential. As a result, we can afford to use longer tracking intervals, allowing us to incorporate out-of-sequence data seamlessly and to conduct track-stitching when future data provide evidence that disambiguates tracks well into the past.
Date issued
2009-08
URI
http://hdl.handle.net/1721.1/73586
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Laboratory for Information and Decision Systems
Journal
Proceedings of the 12th International Conference on Information Fusion, 2009. FUSION '09
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Zhexu Chen, et al. "An efficient message passing algorithm for multi-target tracking" 12th International Conference on Information Fusion, 2009. FUSION '09. ©2009 ISIF
Version: Final published version
ISBN
978-0-9824-4380-4

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.