MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Low overhead concurrency control for partitioned main memory databases

Author(s)
Jones, Evan Philip Charles; Abadi, Daniel J.; Madden, Samuel R.
Thumbnail
DownloadMadden_Low overhead.pdf (365.6Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
Database partitioning is a technique for improving the performance of distributed OLTP databases, since "single partition" transactions that access data on one partition do not need coordination with other partitions. For workloads that are amenable to partitioning, some argue that transactions should be executed serially on each partition without any concurrency at all. This strategy makes sense for a main memory database where there are no disk or user stalls, since the CPU can be fully utilized and the overhead of traditional concurrency control, such as two-phase locking, can be avoided. Unfortunately, many OLTP applications have some transactions which access multiple partitions. This introduces network stalls in order to coordinate distributed transactions, which will limit the performance of a database that does not allow concurrency. In this paper, we compare two low overhead concurrency control schemes that allow partitions to work on other transactions during network stalls, yet have little cost in the common case when concurrency is not needed. The first is a light-weight locking scheme, and the second is an even lighter-weight type of speculative concurrency control that avoids the overhead of tracking reads and writes, but sometimes performs work that eventually must be undone. We quantify the range of workloads over which each technique is beneficial, showing that speculative concurrency control generally outperforms locking as long as there are few aborts or few distributed transactions that involve multiple rounds of communication. On a modified TPC-C benchmark, speculative concurrency control can improve throughput relative to the other schemes by up to a factor of two.
Date issued
2010-01
URI
http://hdl.handle.net/1721.1/72192
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
Proceedings of the 2010 ACM SIGMOD International Conference on Management of data (SIGMOD '10)
Publisher
Association for Computing Machinery (ACM)
Citation
Evan P.C. Jones, Daniel J. Abadi, and Samuel Madden. 2010. Low overhead concurrency control for partitioned main memory databases. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of data (SIGMOD '10). ACM, New York, NY, USA, 603-614.
Version: Author's final manuscript
ISSN
978-1-4503-0032-2

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.