MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantifying overwash flux in barrier systems : an example from Martha's Vineyard, Massachusetts, USA

Author(s)
Carruthers, Emily A
Thumbnail
DownloadFull printable version (10.13Mb)
Other Contributors
Woods Hole Oceanographic Institution.
Advisor
Jeffery P. Donnelly, Andrew D. Ashton and Robert L. Evans.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Coastal barriers are particularly susceptible to the predicted effects of accelerated of sea-level rise and the potential for increased impacts of intense storms. Over centennial scales, barriers are maintained via overtopping during storms, causing deposition of washover fans on their landward sides. This study examines three washover fans on the south shore of Martha's Vineyard using a suite of data including vibracores, ground penetrating radar, high resolution dGPS, and LiDAR data. From these data, the volumes of the deposits were determined and range from 2.1-2.4 x 10⁴ m³. Two overwashes occurred during Hurricane Bob in 1991. The water levels produced by this storm have a return interval of ~28 years, resulting in an onshore sediment flux of 2.4-3.4 m³/m/yr. The third washover was deposited by a nor'easter in January 1997, which has a water level return interval of ~6 years, resulting in a flux of 8.5 m³/m/yr. These fluxes are smaller than the flux of sediment needed to maintain a geometrically stable barrier estimated from shoreline retreat rates, suggesting that the barrier is not in long-term equilibrium, a result supported by the thinning of the barrier over this time interval.
Description
Thesis (S.M.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 68-74).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/69471
Department
Joint Program in Oceanography/Applied Ocean Science and Engineering; Woods Hole Oceanographic Institution; Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Publisher
Massachusetts Institute of Technology
Keywords
Joint Program in Oceanography/Applied Ocean Science and Engineering., Earth, Atmospheric, and Planetary Sciences., Woods Hole Oceanographic Institution.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.