MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analysis of potential applications for the templated dewetting of metal thin films

Author(s)
Frantzeskakis, Emmanouil
Thumbnail
DownloadFull printable version (5.184Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Materials Science and Engineering.
Advisor
Carl V. Thompson, II.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Thin films have a high surface-to-volume ratio and are therefore usually morphologically unstable. They tend to reduce their surface energy through transport of mass by diffusion. As a result, they decay into a collection of small isolated islands or particles. This solid-state process, known as thin film dewetting, can be initiated by grooving at grain boundaries or triple junctions. Dewetting of thin films on topographically modified substrates has many interesting characteristics. It is a novel self-assembly process for the formation of well-ordered nanoparticle arrays with narrow size distributions and uniform crystallographic orientation. Potential applications of particles resulting from templated thin film solid-state dewetting are reviewed. Applications in patterned magnetic information-storage media, plasmon waveguides, and catalytic growth of ordered arrays of semiconducting nanowires and carbon nanotubes are discussed. Templated dewetting technology has not been fully developed, and technological barriers are identified for all of the commercial applications considered.
 
(cont.) However, the self-assembly characteristics of templated dewetting may ultimately offer advantages in the manufacture of both patterned media and catalytic nanomaterial growth technologies.
 
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2005.
 
Includes bibliographical references.
 
Date issued
2005
URI
http://hdl.handle.net/1721.1/33625
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.