MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Under-Coverage of Double Machine Learning Due to Implementation Choices

Author(s)
Siegmann, Charlotte B.
Thumbnail
DownloadThesis PDF (623.4Kb)
Advisor
Andrews, Isaiah
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Double ML estimators can estimate coefficients of interest with far fewer functional form assumptions than linear econometric methods. However, DML requires researchers to make a range of implementation choices, including the selection of the function class, the random seed, and hyperparameter configurations. While asymptotic theory suggests these choices should not affect final estimates, we show that for 10 economic analyses (8 of them published and peer-reviewed), implementation choices affect the results. In half of the datasets, different implementation choices even change the interpretation of findings between negative, null, or positive effects. We link these results to a framework for empirically assessing the performance of machine-learning-based estimators, focusing on precision, coverage, and susceptibility to manipulation. This is meant to complement asymptotic theory. We demonstrate that the coverage of DML confidence intervals is too low—placing an upper bound of 48% on the expected coverage of conventional 95% confidence intervals for published DML economics papers. We show that in the status quo, the susceptibility of DML to manipulation by researchers is high, but propose ways to mitigate this susceptibility.
Date issued
2025-09
URI
https://hdl.handle.net/1721.1/164831
Department
Massachusetts Institute of Technology. Department of Economics
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.