MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Simplifying Equivariant GPU Kernels through Tile-based Programming

Author(s)
Kotak, Mit
Thumbnail
DownloadThesis PDF (675.5Kb)
Advisor
Smidt, Tess E.
Terms of use
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) Copyright retained by author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
E(3)-equivariant neural networks have demonstrated success across a wide range of 3D modeling tasks. Until recently, they were bottlenecked due to their high memory and wall-time requirements. In this thesis we first provide an overview of recent GPU kernel efforts by both academia and industry that address this issue. These approaches tradeoff performance for engineering complexity, while still being algorithmically bottlenecked at 10 % GPU utilization. We instead trade off engineering complexity for performance. This not only lowers the barrier to GPU programming but also builds an abstraction layer to reason about future algorithmic innovations that can improve GPU utilization. Our kernel 𝐵3, based on the tiling- optimizations in just 100 lines of PyTorch-like code. We explore the performance-simplicity tradeoff with two case studies and demonstrate the practicality of our kernel workflow through downstream integration with a production model. We hope this work serves as inspiration to broaden and deepen existing equivariant kernel efforts.
Date issued
2025-09
URI
https://hdl.handle.net/1721.1/164822
Department
Massachusetts Institute of Technology. Center for Computational Science and Engineering
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.