Show simple item record

dc.contributor.authorGonzález, Lucas
dc.contributor.authorToutouh, Jamal
dc.contributor.authorNesmachnow, Sergio
dc.date.accessioned2026-01-29T15:20:43Z
dc.date.available2026-01-29T15:20:43Z
dc.date.issued2026-01-09
dc.identifier.urihttps://hdl.handle.net/1721.1/164676
dc.description.abstractThis article studies the application of deep neural networks for automatic building detection in aerial RGB images. Special focus is put on accuracy robustness in both well-structured and poorly planned urban scenarios, which pose significant challenges due to occlusions, irregular building layouts, and limited contextual cues. The applied methodology considers several CNNs using only RBG images as input, and both validation and transfer capabilities are studied. U-Net-based models achieve the highest single-model accuracy, with an Intersection over Union (𝐼⁢𝑜⁢𝑈) of 0.9101. A soft-voting ensemble of the best U-Net models further increases performance, reaching a best ensemble 𝐼⁢𝑜⁢𝑈 of 0.9665, improving over state-of-the-art building detection methods on standard benchmarks. The approach demonstrates strong generalization using only RGB imagery, supporting scalable, low-cost applications in urban planning and geospatial analysis.en_US
dc.publisherMultidisciplinary Digital Publishing Instituteen_US
dc.relation.isversionofhttp://dx.doi.org/10.3390/ijgi15010036en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceMultidisciplinary Digital Publishing Instituteen_US
dc.titleLow-Cost Deep Learning for Building Detection with Application to Informal Urban Planningen_US
dc.typeArticleen_US
dc.identifier.citationGonzález, L.; Toutouh, J.; Nesmachnow, S. Low-Cost Deep Learning for Building Detection with Application to Informal Urban Planning. ISPRS Int. J. Geo-Inf. 2026, 15, 36.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.relation.journalISPRS International Journal of Geo-Informationen_US
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2026-01-27T14:19:46Z
dspace.date.submission2026-01-27T14:19:45Z
mit.journal.volume15en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record