Show simple item record

dc.contributor.authorAng, Mervin Chun-Yi
dc.contributor.authorSaju, Jolly Madathiparambil
dc.contributor.authorPorter, Thomas K
dc.contributor.authorMohaideen, Sayyid
dc.contributor.authorSarangapani, Sreelatha
dc.contributor.authorKhong, Duc Thinh
dc.contributor.authorWang, Song
dc.contributor.authorCui, Jianqiao
dc.contributor.authorLoh, Suh In
dc.contributor.authorSingh, Gajendra Pratap
dc.contributor.authorChua, Nam-Hai
dc.contributor.authorStrano, Michael S
dc.contributor.authorSarojam, Rajani
dc.date.accessioned2026-01-23T20:06:13Z
dc.date.available2026-01-23T20:06:13Z
dc.date.issued2024
dc.identifier.urihttps://hdl.handle.net/1721.1/164625
dc.description.abstractIncreased exposure to environmental stresses due to climate change have adversely affected plant growth and productivity. Upon stress, plants activate a signaling cascade, involving multiple molecules like H2O2, and plant hormones such as salicylic acid (SA) leading to resistance or stress adaptation. However, the temporal ordering and composition of the resulting cascade remains largely unknown. In this study we developed a nanosensor for SA and multiplexed it with H2O2 nanosensor for simultaneous monitoring of stress-induced H2O2 and SA signals when Brassica rapa subsp. Chinensis (Pak choi) plants were subjected to distinct stress treatments, namely light, heat, pathogen stress and mechanical wounding. Nanosensors reported distinct dynamics and temporal wave characteristics of H2O2 and SA generation for each stress. Based on these temporal insights, we have formulated a biochemical kinetic model that suggests the early H2O2 waveform encodes information specific to each stress type. These results demonstrate that sensor multiplexing can reveal stress signaling mechanisms in plants, aiding in developing climate-resilient crops and pre-symptomatic stress diagnoses.en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/s41467-024-47082-1en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Science and Business Media LLCen_US
dc.titleDecoding early stress signaling waves in living plants using nanosensor multiplexingen_US
dc.typeArticleen_US
dc.identifier.citationAng, M.CY., Saju, J.M., Porter, T.K. et al. Decoding early stress signaling waves in living plants using nanosensor multiplexing. Nat Commun 15, 2943 (2024).en_US
dc.contributor.departmentSingapore-MIT Alliance in Research and Technology (SMART)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2026-01-23T19:58:03Z
dspace.orderedauthorsAng, MC-Y; Saju, JM; Porter, TK; Mohaideen, S; Sarangapani, S; Khong, DT; Wang, S; Cui, J; Loh, SI; Singh, GP; Chua, N-H; Strano, MS; Sarojam, Ren_US
dspace.date.submission2026-01-23T19:58:05Z
mit.journal.volume15en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record