Show simple item record

dc.contributor.authorEllison, Mark D
dc.contributor.authorAllen, Jacqueline
dc.contributor.authorBonfiglio, Michael
dc.contributor.authorSeeburger, Matthew
dc.contributor.authorSetenet, Jean
dc.contributor.authorDiGinto, Biagio
dc.contributor.authorBonanny, Harrison
dc.contributor.authorRussell, Aaliyah
dc.contributor.authorBaird, David
dc.contributor.authorDavis, Liana
dc.contributor.authorMcCarthy, Ella
dc.contributor.authorManley, Alyson
dc.contributor.authorBlatt, Sarah
dc.contributor.authorLippe, David
dc.contributor.authorRagone, Daniel
dc.contributor.authorDyer, Brock
dc.contributor.authorOsgood, Jillian
dc.contributor.authorStrano, Michael S
dc.date.accessioned2026-01-22T21:55:40Z
dc.date.available2026-01-22T21:55:40Z
dc.date.issued2025-03-11
dc.identifier.urihttps://hdl.handle.net/1721.1/164621
dc.description.abstractThe transport of cations of the neurotransmitters acetylcholine, choline, and dopamine through a 1.01 nm-diameter, 1.1 mm-long single-walled carbon nanotube (SWNT) has been studied for the first time. As a comparison, sodium and aniline ion transport was also investigated. All of these ions exhibited significantly enhanced electrophoretic mobilities over bulk transport. The electrophoretic mobilities of acetylcholine, choline, and sodium were found to depend on pH, specifically increasing as pH decreases. This result is explained by hydrogen ions saturating the surface charges of the SWNT. Conversely, dopamine and aniline have mobilities that do not depend on pH. This difference is attributed to the benzene ring and the size of these ions. An analysis of the time required for an ion to traverse the nanotube shows that the ions adsorb to and desorb from the walls as they pass through the tube. Acetylcholine, choline, and sodium show desorption rate constants that decrease with increasing pH, whereas dopamine and aniline have rate constants that remain constant over different pH values. This is consistent with the relationship between adsorption and desorption rate constants and mobility from an adsorption/desorption kinetic model.en_US
dc.language.isoen
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionof10.1021/acs.jpcc.4c07482en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceAmerican Chemical Societyen_US
dc.titleElectrokinetic Motion of Neurotransmitter Ions through a 1.01 nm Diameter Single-Walled Carbon Nanotubeen_US
dc.typeArticleen_US
dc.identifier.citationMark D. Ellison, Jacqueline Allen, Michael Bonfiglio, Matthew Seeburger, Jean Setenet, Biagio DiGinto, Harrison Bonanny, Aaliyah Russell, David Baird, Liana Davis, Ella McCarthy, Alyson Manley, Sarah Blatt, David Lippe, Daniel Ragone, Brock Dyer, Jillian Osgood, and Michael S. Strano. The Journal of Physical Chemistry C 2025 129 (11), 5472-5482.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.relation.journalThe Journal of Physical Chemistry Cen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2026-01-22T21:50:19Z
dspace.orderedauthorsEllison, MD; Allen, J; Bonfiglio, M; Seeburger, M; Setenet, J; DiGinto, B; Bonanny, H; Russell, A; Baird, D; Davis, L; McCarthy, E; Manley, A; Blatt, S; Lippe, D; Ragone, D; Dyer, B; Osgood, J; Strano, MSen_US
dspace.date.submission2026-01-22T21:50:23Z
mit.journal.volume129en_US
mit.journal.issue11en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record