Show simple item record

dc.contributor.authorRitt, Cody L
dc.contributor.authorQuien, Michelle
dc.contributor.authorWei, Zitang
dc.contributor.authorGress, Hagen
dc.contributor.authorDronadula, Mohan T
dc.contributor.authorAltmisdort, Kaan
dc.contributor.authorNguyen, Huong Giang T
dc.contributor.authorZangmeister, Christopher D
dc.contributor.authorTu, Yu-Ming
dc.contributor.authorGarimella, Sanjay S
dc.contributor.authorAmirabadi, Shahab
dc.contributor.authorGadaloff, Michael
dc.contributor.authorHu, Weiguo
dc.contributor.authorAluru, Narayana R
dc.contributor.authorEkinci, Kamil L
dc.contributor.authorBunch, J Scott
dc.contributor.authorStrano, Michael S
dc.date.accessioned2026-01-20T21:12:18Z
dc.date.available2026-01-20T21:12:18Z
dc.date.issued2025-11-12
dc.identifier.urihttps://hdl.handle.net/1721.1/164604
dc.description.abstractAll polymers exhibit gas permeability through the free volume of entangled polymer chains1, 2–3. By contrast, two-dimensional (2D) materials including graphene stack densely and can exhibit molecular impermeability4, 5–6. Solution-synthesized 2D polymers that exhibit the latter by poly-condensation have been a longstanding goal. Herein, we demonstrate self-supporting, spin-coated 2D polyaramid nanofilms that exhibit nitrogen permeability below 3.1 × 10−9 Barrer, nearly four orders of magnitude lower than every class of existing polymer, and similar for other gases tested (helium, argon, oxygen, methane and sulfur hexafluoride). Optical interference during the pressurization of nanofilm-coated microwells allows measurement of mechanosensitive rim opening and sealing, creating gas-filled bulges that are stable exceeding three years. This discovery enables 2D polymer resonators with high resonance frequencies (about 8 MHz) and quality factors up to 537, similar to graphene. A 60-nm coating of air-sensitive perovskites reduces the lattice degradation rate 14-fold with an oxygen permeability of 3.3 × 10−8 Barrer. Molecularly impermeable polymers promise the next generation of barriers that are synthetically processable, chemically amenable and maximize molecular rejection with minimal material, ultimately advancing sustainability goals.en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/s41586-025-09674-9en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivativesen_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceSpringer Science and Business Media LLCen_US
dc.titleA molecularly impermeable polymer from two-dimensional polyaramidsen_US
dc.typeArticleen_US
dc.identifier.citationRitt, C.L., Quien, M., Wei, Z. et al. A molecularly impermeable polymer from two-dimensional polyaramids. Nature 647, 383–389 (2025).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.relation.journalNatureen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2026-01-16T21:54:24Z
dspace.orderedauthorsRitt, CL; Quien, M; Wei, Z; Gress, H; Dronadula, MT; Altmisdort, K; Nguyen, HGT; Zangmeister, CD; Tu, Y-M; Garimella, SS; Amirabadi, S; Gadaloff, M; Hu, W; Aluru, NR; Ekinci, KL; Bunch, JS; Strano, MSen_US
dspace.date.submission2026-01-16T21:54:26Z
mit.journal.volume647en_US
mit.journal.issue8089en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record