Show simple item record

dc.contributor.authorGress, Hagen
dc.contributor.authorRitt, Cody L
dc.contributor.authorShomakhov, Inal
dc.contributor.authorAltmisdort, Kaan
dc.contributor.authorQuien, Michelle
dc.contributor.authorWei, Zitang
dc.contributor.authorLawall, John R
dc.contributor.authorBoddeti, Narasimha
dc.contributor.authorStrano, Michael S
dc.contributor.authorBunch, J Scott
dc.contributor.authorEkinci, Kamil L
dc.date.accessioned2026-01-16T21:53:38Z
dc.date.available2026-01-16T21:53:38Z
dc.date.issued2025-12-03
dc.identifier.urihttps://hdl.handle.net/1721.1/164552
dc.description.abstractTwo-dimensional polyaramids exhibit strong hydrogen bonding to create molecularly thin nanosheets analogous to graphene. Here, we report the first nanomechanical resonators made out of a two-dimensional polyaramid, 2DPA-1, with thicknesses as small as 8 nm. To fabricate these molecular-scale resonators, we transferred nanofilms of 2DPA-1 onto chips with previously etched arrays of circular microwells. We then characterized the thermal resonances of these resonators under different conditions. When there is no residual gas inside the 2DPA-1-covered microwells, the eigenfrequencies are well-described by a tensioned plate theory, providing the Young's modulus and tension of the 2DPA-1 nanofilms. With gas present, the nanofilms bulge up and mechanical resonances are modified due to the adhesion, bulging and slack present in the system. The fabrication and mechanical characterization of these first 2DPA-1 nanomechanical resonators represent a convincing path toward molecular-scale polymeric NEMS with high mechanical strength, low density, and synthetic processability.en_US
dc.language.isoen
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionof10.1021/acs.nanolett.5c04440en_US
dc.rightsCreative Commons Attribution-Noncommercial-ShareAlikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearxiven_US
dc.titleMolecularly Thin Polyaramid Nanomechanical Resonatorsen_US
dc.typeArticleen_US
dc.identifier.citationHagen Gress, Cody L. Ritt, Inal Shomakhov, Kaan Altmisdort, Michelle Quien, Zitang Wei, John R. Lawall, Narasimha Boddeti, Michael S. Strano, J. Scott Bunch, and Kamil L. Ekinci Nano Letters 2025 25 (50), 17301-17307.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.relation.journalNano Lettersen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2026-01-16T21:47:12Z
dspace.orderedauthorsGress, H; Ritt, CL; Shomakhov, I; Altmisdort, K; Quien, M; Wei, Z; Lawall, JR; Boddeti, N; Strano, MS; Bunch, JS; Ekinci, KLen_US
dspace.date.submission2026-01-16T21:47:14Z
mit.journal.volume25en_US
mit.journal.issue50en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record