Show simple item record

dc.contributor.authorLam, Felix H
dc.contributor.authorTuranlı-Yıldız, Burcu
dc.contributor.authorLiu, Dany
dc.contributor.authorResch, Michael G
dc.contributor.authorFink, Gerald R
dc.contributor.authorStephanopoulos, Gregory
dc.date.accessioned2026-01-15T22:32:14Z
dc.date.available2026-01-15T22:32:14Z
dc.date.issued2021-06-25
dc.identifier.urihttps://hdl.handle.net/1721.1/164542
dc.description.abstractLignocellulosic biomass remains unharnessed for the production of renewable fuels and chemicals due to challenges in deconstruction and the toxicity its hydrolysates pose to fermentation microorganisms. Here, we show in Saccharomyces cerevisiae that engineered aldehyde reduction and elevated extracellular potassium and pH are sufficient to enable near-parity production between inhibitor-laden and inhibitor-free feedstocks. By specifically targeting the universal hydrolysate inhibitors, a single strain is enhanced to tolerate a broad diversity of highly toxified genuine feedstocks and consistently achieve industrial-scale titers (cellulosic ethanol of >100 grams per liter when toxified). Furthermore, a functionally orthogonal, lightweight design enables seamless transferability to existing metabolically engineered chassis strains: We endow full, multifeedstock tolerance on a xylose-consuming strain and one producing the biodegradable plastics precursor lactic acid. The demonstration of “drop-in” hydrolysate competence enables the potential of cost-effective, at-scale biomass utilization for cellulosic fuel and nonfuel products alike.en_US
dc.language.isoen
dc.publisherAmerican Association for the Advancement of Scienceen_US
dc.relation.isversionof10.1126/sciadv.abf7613en_US
dc.rightsCreative Commons Attribution-Noncommercialen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/en_US
dc.sourceAmerican Association for the Advancement of Scienceen_US
dc.titleEngineered yeast tolerance enables efficient production from toxified lignocellulosic feedstocksen_US
dc.typeArticleen_US
dc.identifier.citationFelix H. Lam et al. ,Engineered yeast tolerance enables efficient production from toxified lignocellulosic feedstocks.Sci. Adv.7, eabf7613 (2021).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentWhitehead Institute for Biomedical Researchen_US
dc.relation.journalScience Advancesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2026-01-15T22:24:57Z
dspace.orderedauthorsLam, FH; Turanlı-Yıldız, B; Liu, D; Resch, MG; Fink, GR; Stephanopoulos, Gen_US
dspace.date.submission2026-01-15T22:24:58Z
mit.journal.volume7en_US
mit.journal.issue26en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record