Show simple item record

dc.contributor.authorTruong, Anh
dc.contributor.authorMahmoud, Ahmed
dc.contributor.authorKonakovi? Lukovi?, Mina
dc.contributor.authorSolomon, Justin
dc.date.accessioned2026-01-13T19:54:53Z
dc.date.available2026-01-13T19:54:53Z
dc.date.issued2025-12-14
dc.identifier.isbn979-8-4007-2137-3
dc.identifier.urihttps://hdl.handle.net/1721.1/164528
dc.descriptionAnh Truong, Ahmed H. Mahmoud, Mina Konaković Luković, and Justin Solomon. 2025. Low-Rank Adaptation of Neural Fields. In Proceedings of the SIGGRAPH Asia 2025 Conference Papers (SA Conference Papers '25). Association for Computing Machinery, New York, NY, USA, Article 86, 1–12.en_US
dc.description.abstractProcessing visual data often involves small adjustments or sequences of changes, e.g., image filtering, surface smoothing, and animation. While established graphics techniques like normal mapping and video compression exploit redundancy to encode such small changes efficiently, the problem of encoding small changes to neural fields—neural network parameterizations of visual or physical functions—has received less attention. We propose a parameter-efficient strategy for updating neural fields using low-rank adaptations (LoRA). LoRA, a method from the parameter-efficient fine-tuning LLM community, encodes small updates to pre-trained models with minimal computational overhead. We adapt LoRA for instance-specific neural fields, avoiding the need for large pre-trained models and yielding lightweight updates. We validate our approach with experiments in image filtering, geometry editing, video compression, and energy-based editing, demonstrating its effectiveness and versatility for representing neural field updates.en_US
dc.publisherACM|SIGGRAPH Asia 2025 Conference Papersen_US
dc.relation.isversionofhttps://doi.org/10.1145/3757377.3763882en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceAssociation for Computing Machineryen_US
dc.titleLow-Rank Adaptation of Neural Fieldsen_US
dc.typeArticleen_US
dc.identifier.citationAnh Truong, Ahmed H. Mahmoud, Mina Konaković Luković, and Justin Solomon. 2025. Low-Rank Adaptation of Neural Fields. In Proceedings of the SIGGRAPH Asia 2025 Conference Papers (SA Conference Papers '25). Association for Computing Machinery, New York, NY, USA, Article 86, 1–12.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.mitlicensePUBLISHER_POLICY
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2026-01-01T08:52:33Z
dc.language.rfc3066en
dc.rights.holderThe author(s)
dspace.date.submission2026-01-01T08:52:36Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record