Show simple item record

dc.contributor.authorLi, Shuowen
dc.contributor.authorWang, Kexin
dc.contributor.authorFang, Minglu
dc.contributor.authorHuang, Danqi
dc.contributor.authorAsadipour, Ali
dc.contributor.authorMi, Haipeng
dc.contributor.authorSun, Yitong
dc.date.accessioned2026-01-13T19:42:01Z
dc.date.available2026-01-13T19:42:01Z
dc.date.issued2025-12-14
dc.identifier.isbn979-8-4007-2129-8
dc.identifier.urihttps://hdl.handle.net/1721.1/164527
dc.descriptionSA Art Papers ’25, Hong Kong, Hong Kongen_US
dc.description.abstractWe present a semantic-feedback framework that treats natural language as a regulatory signal for evolving artificial-life systems. Instead of using prompts to select finished images, text in our system shapes the dynamics of an interactive ecosystem, allowing audiences to cultivate behaviors over time. The framework couples a learned mapping from prompts to simulation parameters with evolutionary search and vision–language evaluation, so user intent modulates both visible outcomes and the underlying generative rules. It supports iterative prompt refinement, multi-agent interaction, and the synthesis of new collective rules from community input. In a user study, participants achieved higher semantic alignment and reported a greater sense of control than with manual tuning, while behaviors remained diverse across generations. As an art-led contribution, the work reframes authoring as participatory cultivation and advances open-ended evolution as a socially distributed, not solely algorithmic, process; as a tool contribution, it offers a practical platform for co-creative generative design.en_US
dc.publisherACM|SIGGRAPH Asia 2025 Art Papersen_US
dc.relation.isversionofhttps://doi.org/10.1145/3757369.3767620en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceAssociation for Computing Machineryen_US
dc.titleParticipatory Evolution of Artificial Life Systems via Semantic Feedbacken_US
dc.typeArticleen_US
dc.identifier.citationShuowen Li, Kexin Wang, Minglu Fang, Danqi Huang, Ali Asadipour, Haipeng Mi, and Yitong Sun. 2025. Participatory Evolution of Artificial Life Systems via Semantic Feedback. In Proceedings of the SIGGRAPH Asia 2025 Art Papers (SA Art Papers '25). Association for Computing Machinery, New York, NY, USA, Article 24, 1–10.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.identifier.mitlicensePUBLISHER_POLICY
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2026-01-01T08:49:56Z
dc.language.rfc3066en
dc.rights.holderThe author(s)
dspace.date.submission2026-01-01T08:49:56Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record