Show simple item record

dc.contributor.authorGao, Fan
dc.contributor.authorZhao, Xinjie
dc.contributor.authorXia, Ding
dc.contributor.authorZhou, Zhongyi
dc.contributor.authorYang, Rui
dc.contributor.authorLu, Jinghui
dc.contributor.authorJiang, Hang
dc.contributor.authorPark, Chanjun
dc.contributor.authorLi, Irene
dc.date.accessioned2025-12-12T20:22:10Z
dc.date.available2025-12-12T20:22:10Z
dc.date.issued2025-11-10
dc.identifier.isbn979-8-4007-2040-6
dc.identifier.urihttps://hdl.handle.net/1721.1/164309
dc.descriptionCIKM ’25, Seoul, Republic of Koreaen_US
dc.description.abstractSeeking dietary guidance often requires navigating complex nutritional knowledge while considering individual health needs. To address this, we present HealthGenie, an interactive platform that leverages the interpretability of knowledge graphs (KGs) and the conversational power of large language models (LLMs) to deliver tailored dietary recommendations alongside integrated nutritional visualizations for fast, intuitive insights. Upon receiving a user query, HealthGenie performs intent refinement and maps user's needs to a curated nutritional knowledge graph. The system then retrieves and visualizes relevant subgraphs, while offering detailed, explainable recommendations. Users can interactively adjust preferences to further tailor results. A within-subject study and quantitative analysis show that HealthGenie reduces cognitive load and interaction effort while supporting personalized, health-aware decision-making.en_US
dc.publisherACM|Proceedings of the 34th ACM International Conference on Information and Knowledge Managementen_US
dc.relation.isversionofhttps://doi.org/10.1145/3746252.3761479en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAssociation for Computing Machineryen_US
dc.title$HealthGenie:$ A Knowledge-Driven LLM Framework for Tailored Dietary Guidanceen_US
dc.typeArticleen_US
dc.identifier.citationFan Gao, Xinjie Zhao, Ding Xia, Zhongyi Zhou, Rui Yang, Jinghui Lu, Hang Jiang, Chanjun Park, and Irene Li. 2025. HealthGenie: A Knowledge-Driven LLM Framework for Tailored Dietary Guidance. In Proceedings of the 34th ACM International Conference on Information and Knowledge Management (CIKM '25). Association for Computing Machinery, New York, NY, USA, 6639–6643.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Media Laboratoryen_US
dc.identifier.mitlicensePUBLISHER_POLICY
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2025-12-01T09:32:27Z
dc.language.rfc3066en
dc.rights.holderThe author(s)
dspace.date.submission2025-12-01T09:32:28Z
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record