| dc.contributor.advisor | del Alamo, Jesús A. | |
| dc.contributor.author | Lee, Jungsoo | |
| dc.date.accessioned | 2025-11-17T19:06:59Z | |
| dc.date.available | 2025-11-17T19:06:59Z | |
| dc.date.issued | 2025-05 | |
| dc.date.submitted | 2025-08-14T19:32:14.553Z | |
| dc.identifier.uri | https://hdl.handle.net/1721.1/163681 | |
| dc.description.abstract | As the demand for computation in neural networks continues to rise, conventional computing resources are increasingly constrained by their limited energy efficiency. One promising solution to this challenge is analog in-memory computing (AIMC), which enables efficient matrix-vector multiplications by encoding synaptic weights into the conductance of nonvolatile memory devices. These devices are structured into crossbar arrays. To explore the potential of non-volatile memory devices in AIMC, investigations involve simulating crossbar array operations using IBM’s AIHWKIT. With this tool, I investigate the implementation of various analog computing algorithms, including TikiTaka. AIMC is evaluated for simple MNIST classification tasks and more complex deep learning models, Long Short-Term Memory (LSTM) networks. I demonstrate that devices can be categorized based on their asymmetry and non-linear weight modulation behavior. Performance improvements through the Tikitaka algorithm are observed only when the device provides a sufficient converge-dragging force; otherwise, the algorithm may even degrade performance. I also investigate how pulse-to-pulse noise and device-to-device variability affect system performance, as well as how different peripheral circuit configurations influence the overall behavior. Finally, I propose an Analog Low-Rank Adapter (Analog LoRA) by applying analog computing to the fine-tuning of large language models. I explore the necessary conditions for Analog LoRA to achieve performance comparable to its digital counterpart. Based on these findings, I present design guidelines for effectively applying analog computing to various machine learning tasks on edge devices. | |
| dc.publisher | Massachusetts Institute of Technology | |
| dc.rights | In Copyright - Educational Use Permitted | |
| dc.rights | Copyright retained by author(s) | |
| dc.rights.uri | https://rightsstatements.org/page/InC-EDU/1.0/ | |
| dc.title | Analog On-chip Training and Inference with Non-volatile
Memory Devices | |
| dc.type | Thesis | |
| dc.description.degree | S.M. | |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
| mit.thesis.degree | Master | |
| thesis.degree.name | Master of Science in Electrical Engineering and Computer Science | |