| dc.contributor.author | Shi, Jiale | |
| dc.contributor.author | Walsh, Dylan | |
| dc.contributor.author | Zou, Weizhong | |
| dc.contributor.author | Rebello, Nathan J | |
| dc.contributor.author | Deagen, Michael E | |
| dc.contributor.author | Fransen, Katharina A | |
| dc.contributor.author | Gao, Xian | |
| dc.contributor.author | Olsen, Bradley D | |
| dc.contributor.author | Audus, Debra J | |
| dc.date.accessioned | 2025-11-14T21:11:02Z | |
| dc.date.available | 2025-11-14T21:11:02Z | |
| dc.date.issued | 2024-02-14 | |
| dc.identifier.uri | https://hdl.handle.net/1721.1/163668 | |
| dc.description.abstract | Synthetic polymers, in contrast to small molecules and deterministic biomacromolecules, are typically ensembles composed of polymer chains with varying numbers, lengths, sequences, chemistry, and topologies. While numerous approaches exist for measuring pairwise similarity among small molecules and sequence-defined biomacromolecules, accurately determining the pairwise similarity between two polymer ensembles remains challenging. This work proposes the earth mover's distance (EMD) metric to calculate the pairwise similarity score between two polymer ensembles. EMD offers a greater resolution of chemical differences between polymer ensembles than the averaging method and provides a quantitative numeric value representing the pairwise similarity between polymer ensembles in alignment with chemical intuition. The EMD approach for assessing polymer similarity enhances the development of accurate chemical search algorithms within polymer databases and can improve machine learning techniques for polymer design, optimization, and property prediction. | en_US |
| dc.language.iso | en | |
| dc.publisher | American Chemical Society | en_US |
| dc.relation.isversionof | 10.1021/acspolymersau.3c00029 | en_US |
| dc.rights | Creative Commons Attribution-NonCommercial-NoDerivatives | en_US |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | en_US |
| dc.source | American Chemical Society | en_US |
| dc.title | Calculating Pairwise Similarity of Polymer Ensembles via Earth Mover’s Distance | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Jiale Shi, Dylan Walsh, Weizhong Zou, Nathan J. Rebello, Michael E. Deagen, Katharina A. Fransen, Xian Gao, Bradley D. Olsen, and Debra J. Audus. ACS Polymers Au 2024 4 (1), 66-76. | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Chemical Engineering | en_US |
| dc.relation.journal | ACS Polymers Au | en_US |
| dc.eprint.version | Final published version | en_US |
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
| eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
| dc.date.updated | 2025-11-14T20:56:45Z | |
| dspace.orderedauthors | Shi, J; Walsh, D; Zou, W; Rebello, NJ; Deagen, ME; Fransen, KA; Gao, X; Olsen, BD; Audus, DJ | en_US |
| dspace.date.submission | 2025-11-14T20:56:46Z | |
| mit.journal.volume | 4 | en_US |
| mit.journal.issue | 1 | en_US |
| mit.license | PUBLISHER_CC | |
| mit.metadata.status | Authority Work and Publication Information Needed | en_US |