Show simple item record

dc.contributor.advisorLeonard, John
dc.contributor.authorWang, Eric K.
dc.date.accessioned2025-11-05T19:34:59Z
dc.date.available2025-11-05T19:34:59Z
dc.date.issued2025-05
dc.date.submitted2025-06-26T14:15:37.900Z
dc.identifier.urihttps://hdl.handle.net/1721.1/163564
dc.description.abstractGeneralized planning methods for dynamic manipulation struggle to efficiently solve kinodynamic constraints. Gradient-based methods suffer from initialization sensitivity, local optimum convergence, and lack of feasibility guarantees, while sampling-based methods can require large computation times if there exist challenging boundary conditions. Iterative Time Optimal Path Parameterization, or iTOPP, guarantees a feasible local minimum for a dynamic grasping problem by iteratively decreasing transit time for a trajectory initially generated to satisfy kinodynamic contact constraints. We demonstrate solutions that can handle initial or final goal states defined as quasistatically infeasible, in which purely quasistatic motions cannot generate a warm start trajectory. We also design an indirect adaptive controller that can track a desired dynamic grasping trajectory assuming unknown object mass and location parameters.
dc.publisherMassachusetts Institute of Technology
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.rightsCopyright retained by author(s)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titlePlanning for Dynamic Nonprehensile Object Transport
dc.typeThesis
dc.description.degreeS.M.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
mit.thesis.degreeMaster
thesis.degree.nameMaster of Science in Mechanical Engineering


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record