MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Leaf Stripping on Uniform Attachment Trees

Author(s)
Addario‐Berry, Louigi; Brandenberger, Anna; Briend, Simon; Broutin, Nicolas; Lugosi, Gábor
Thumbnail
DownloadRandom Struct Algorithms - 2025 - Addario‐Berry - Leaf Stripping on Uniform Attachment Trees.pdf (348.0Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
In this note, we analyze the performance of a simple root-finding algorithm in uniform attachment trees. The leaf-stripping algorithm recursively removes all leaves of the tree for a carefully chosen number of rounds. We show that, with probability 1 − 𝜀, the set of remaining vertices contains the root and has a size only depending on 𝜀 but noton the size of the tree.
Date issued
2025-08-04
URI
https://hdl.handle.net/1721.1/163405
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Random Structures & Algorithms
Publisher
Wiley
Citation
Addario-Berry, L., Brandenberger, A., Briend, S., Broutin, N. and Lugosi, G. (2025), Leaf Stripping on Uniform Attachment Trees. Random Struct Alg, 67: e70023.
Version: Final published version
ISSN
1042-9832
1098-2418

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.