Show simple item record

dc.contributor.authorBuehler, Markus J.
dc.date.accessioned2025-10-24T21:23:01Z
dc.date.available2025-10-24T21:23:01Z
dc.date.issued2025-07-31
dc.identifier.urihttps://hdl.handle.net/1721.1/163388
dc.description.abstractWe present an agentic, autonomous graph expansion framework that iteratively structures and refines knowledge in situ. Unlike conventional knowledge graph construction methods relying on static extraction or single-pass learning, our approach couples a reasoning-native large language model with a continually updated graph representation. At each step, the system actively generates new concepts and relationships, merges them into a global graph, and formulates subsequent prompts based on its evolving structure. Through this feedback-driven loop, the model organizes information into a scale-free network characterized by hub formation, stable modularity, and bridging nodes that link disparate knowledge clusters. Over hundreds of iterations, new nodes and edges continue to appear without saturating, while centrality measures and shortest path distributions evolve to yield increasingly distributed connectivity. Applied to materials design problems, we present compositional reasoning experiments to foster knowledge synthesis, yielding cross-domain ideas that transcend rote summarization.en_US
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttps://doi.org/10.1557/s43578-025-01652-1en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer International Publishingen_US
dc.titleAgentic deep graph reasoning yields self-organizing knowledge networksen_US
dc.typeArticleen_US
dc.identifier.citationBuehler, M.J. Agentic deep graph reasoning yields self-organizing knowledge networks. J. Mater. Res. 40, 2204–2242 (2025).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Atomistic and Molecular Mechanicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Computational Science and Engineeringen_US
dc.contributor.departmentMIT Schwarzmann College of Computingen_US
dc.relation.journalJournal of Materials Researchen_US
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2025-10-08T14:38:28Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2025-10-08T14:38:28Z
mit.journal.volume40en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record