Show simple item record

dc.contributor.authorZhang, Tianyi
dc.contributor.authorKrayev, Andrey
dc.contributor.authorYang, Tilo H
dc.contributor.authorMao, Nannan
dc.contributor.authorHoang, Lauren
dc.contributor.authorWang, Zhien
dc.contributor.authorLiu, Hongwei
dc.contributor.authorPeng, Yu‐Ren
dc.contributor.authorZhu, Yunyue
dc.contributor.authorZheng, Xudong
dc.contributor.authorIsotta, Eleonora
dc.contributor.authorKira, Maria E
dc.contributor.authorRighi, Ariete
dc.contributor.authorPimenta, Marcos A
dc.contributor.authorChueh, Yu‐Lun
dc.contributor.authorPop, Eric
dc.contributor.authorMannix, Andrew J
dc.contributor.authorKong, Jing
dc.date.accessioned2025-10-24T15:05:25Z
dc.date.available2025-10-24T15:05:25Z
dc.date.issued2025-08-08
dc.identifier.urihttps://hdl.handle.net/1721.1/163385
dc.description.abstract2D Janus transition metal dichalcogenides (TMDs) are promising candidatesfor various applications including non-linear optics, energy harvesting, andcatalysis. These materials are usually synthesized via chemical conversionof pristine TMDs. Nanometer-scale characterization of the obtained Janusmaterials’ morphology and local composition is crucial for both the synthesisoptimization and the future device applications. In this work, we present theresults of cross-correlated atomic force microscopy (AFM) and tip-enhancedRaman spectroscopy (TERS) study of Janus monolayers synthesizedby the hydrogen plasma-assisted chemical conversion of MoSe 2 andMoS2 . We demonstrate that the choice of both the growth substrate and thestarting TMD influences the residual strain, thereby shaping the nanoscalemorphology of the resulting Janus material. Furthermore, by employingTERS imaging, we show the presence of nanoscale islands (≈20 nm across)of MoSe 2 - Mo SSe (MoS2 -MoSeS ) vertical heterostructures originating from thebilayer nanoislands in the precursor monolayer crystals. The understanding ofthe origins of nanoscale defects in Janus TMDs revealed in this study can helpwith further optimization of the Janus conversion process towards uniformand wrinkle-/crack-free Janus materials. Moreover, this work shows thatcross-correlated AFM and TERS imaging is a powerful and accessible methodfor studying nanoscale composition and defects in Janus TMD monolayers.en_US
dc.language.isoen
dc.publisherWileyen_US
dc.relation.isversionofhttps://doi.org/10.1002/smll.202504742en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceWileyen_US
dc.titleSynthesis‐Related Nanoscale Defects in Mo‐Based Janus Monolayers Revealed by Cross‐Correlated AFM and TERS Imagingen_US
dc.typeArticleen_US
dc.identifier.citationT. Zhang, A. Krayev, T. H. Yang, et al. “ Synthesis-Related Nanoscale Defects in Mo-Based Janus Monolayers Revealed by Cross-Correlated AFM and TERS Imaging.” Small 21, no. 37 (2025): 21, 2504742.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.relation.journalSmallen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2025-10-24T15:00:12Z
dspace.orderedauthorsZhang, T; Krayev, A; Yang, TH; Mao, N; Hoang, L; Wang, Z; Liu, H; Peng, Y; Zhu, Y; Zheng, X; Isotta, E; Kira, ME; Righi, A; Pimenta, MA; Chueh, Y; Pop, E; Mannix, AJ; Kong, Jen_US
dspace.date.submission2025-10-24T15:00:21Z
mit.journal.volume21en_US
mit.journal.issue37en_US
mit.licensePUBLISHER_CC


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record