MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Field-Scale Rice Area and Yield Mapping in Sri Lanka with Optical Remote Sensing and Limited Training Data

Author(s)
Özdoğan, Mutlu; Wang, Sherrie; Ghose, Devaki; Fraga, Eduardo; Fernandes, Ana; Varela, Gonzalo; ... Show more Show less
Thumbnail
Downloadremotesensing-17-03065.pdf (4.596Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Rice is a staple crop for over half the world’s population, and accurate, timely information on its planted area and production is crucial for food security and agricultural policy, particularly in developing nations like Sri Lanka. However, reliable rice monitoring in regions like Sri Lanka faces significant challenges due to frequent cloud cover and the fragmented nature of smallholder farms. This research introduces a novel, cost-effective method for mapping rice-planted area and yield at field scales in Sri Lanka using optical satellite data. The rice-planted fields were identified and mapped using a phenologically tuned image classification algorithm that highlights rice presence by observing water occurrence during transplanting and vegetation activity during subsequent crop growth. To estimate yields, a random forest regression model was trained at the district level by incorporating a satellite-derived chlorophyll index and environmental variables and subsequently applied at the field level. The approach has enabled the creation of two decades (2000–2022) of reliable, field-scale rice area and yield estimates, achieving map accuracies between 70% and over 90% and yield estimates with less than 20% error. These highly granular results, which are not available through traditional surveys, show a strong correlation with government statistics. They also demonstrate the advantages of a rule-based, phenology-driven classification over purely statistical machine learning models for long-term consistency in dynamic agricultural environments. This work highlights the significant potential of remote sensing to provide accurate and detailed insights into rice cultivation, supporting policy decisions and enhancing food security in Sri Lanka and other cloud-prone regions.
Date issued
2025-09-02
URI
https://hdl.handle.net/1721.1/163196
Department
MIT Institute for Data, Systems, and Society; Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Remote Sensing
Publisher
Multidisciplinary Digital Publishing Institute
Citation
Özdoğan, M.; Wang, S.; Ghose, D.; Fraga, E.; Fernandes, A.; Varela, G. Field-Scale Rice Area and Yield Mapping in Sri Lanka with Optical Remote Sensing and Limited Training Data. Remote Sens. 2025, 17, 3065.
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.