MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Single cells are compactly and accurately described as fractional Kelvin-Voigt materials

Author(s)
Das, Mohua; Waeterloos, Jarno L.; Clasen, Christian; McKinley, Gareth H.
Thumbnail
Download397_2025_Article_1515.pdf (1.614Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
The mechanobiology of single cells plays a crucial role in various biological processes, including embryonic development, cancer treatment, and wound healing. This study highlights the use of the fractional Kelvin-Voigt model (FKVM)—a viscoelastic model consisting of two Scott Blair elements in parallel—to compactly and accurately characterize single-cell rheology. Unlike traditional power law models, which primarily capture the key features of the mechanical response at long timescales, the FKVM effectively captures both short- and long-timescale mechanical responses with a minimal number of constitutive parameters. Experimental small-amplitude oscillatory shear (SAOS) data for dividing canine kidney cells, creep data of human K562 erythroleukemic cells, and creep recovery data of blastomere cytoplasm are all analyzed to showcase the accuracy and versatility of the FKVM. Additionally, for the first time, the continuous relaxation and retardation spectra corresponding to the fractional differential formulation of the FKVM are derived. These results establish a comprehensive framework for predictive analysis of single-cell rheology in both the time and frequency domains. Graphical abstract
Date issued
2025-08-25
URI
https://hdl.handle.net/1721.1/163084
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Springer Berlin Heidelberg
Citation
Das, M., Waeterloos, J.L., Clasen, C. et al. Single cells are compactly and accurately described as fractional Kelvin-Voigt materials. Rheol Acta 64, 407–421 (2025).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.