MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Causal inference for complex systems and applications to turbulent flows

Author(s)
Sánchez, Álvaro Martínez
Thumbnail
DownloadThesis PDF (28.85Mb)
Advisor
Lozano-Durán, Adrián
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Causality lies at the heart of scientific inquiry, serving as the fundamental basis for understanding interactions among variables in physical systems. Despite its central role, current methods for causal inference face significant challenges due to nonlinear dependencies, stochastic interactions, self-causation, collider effects, and influences from exogenous factors, among others. While existing methods can effectively address some of these challenges, no single approach has successfully integrated all these aspects. Here, we address these challenges with SURD: Synergistic-Unique-Redundant Decomposition of causality (Nat. Commun., vol. 15, 2024, p. 9296). SURD quantifies causality as the increments of redundant, unique, and synergistic information gained about future events from past observations. The formulation is non-intrusive and applicable to both computational and experimental investigations, even when samples are scarce. We benchmark SURD in scenarios that pose significant challenges for causal inference and demonstrate that it offers a more reliable quantification of causality compared to previous methods. We further illustrate the applicability of our approach in two turbulent-flow scenarios: the energy transfer across scales in the turbulent energy cascade and the interaction between motions across scales in a turbulent boundary layer. Our results show that, without accounting for redundant and synergistic effects, traditional approaches to causal inference may lead to incomplete or misleading conclusions.
Date issued
2025-05
URI
https://hdl.handle.net/1721.1/163052
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.