MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automated Finetuning via Sparse Autoencoders

Author(s)
Sivakumar, Ragulan
Thumbnail
DownloadThesis PDF (1.775Mb)
Advisor
Berger, Bonnie
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Currently, the field of interpretability is traditionally confined to diagnostics. However, this thesis presents a novel method using interpretability in sparse autoencoders to achieve better performance in small models via instruction finetuning. Specifically, we present UnderstandTune, an autonomous method for assembling high-quality instruction finetuning datasets with minimal human intervention, requiring only concise task descriptions rather than evaluation dataset distributions. Our empirical evaluations show that UnderstandTune consistently outperforms uninformed finetuning baselines across multiple benchmarks. Complementing this, Lalon introduces a mixture-of-informed-experts (MoIE) architecture that routes queries to specialized models independently finetuned via UnderstandTune. This modular approach achieves competitive performance against larger monolithic models in specialized domains, while utilizing fewer parameters, training examples, and computational resources. The framework’s modularity enables independent optimization of components from sparse autoencoders to MoIE routing mechanisms. This research demonstrates how interpretability can be used to enhance performance through intelligent data curation and suggests a new paradigm where interpretability and efficiency reinforce each other toward more capable, resource-efficient AI systems.
Date issued
2025-05
URI
https://hdl.handle.net/1721.1/163022
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.