MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Graph Neural Networks for City Policy Recommendations as a Link Prediction Task

Author(s)
Rozario, Consecrata Maria
Thumbnail
DownloadThesis PDF (1.016Mb)
Advisor
Bayomi, Norhan
Fernandez, John E.
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
Graph Neural Networks (GNNs) have become a widely utilized tool in recommender systems in various contexts. While recommendation tasks can be approached using a multitude of data structures and types, graph-structured data is particularly well-suited for this domain, as graphs naturally capture a variety of relationships and interactions between entities. By leveraging graph representation learning, we can effectively encode these complex dependencies, enabling robust and context-aware recommendations. We use this methodology in the domain of policy recommendations for urban centers. To recommend policies, we would learn the complex local and global relationships between cities, their environmental features, and currently implemented policies. We construct a graph structure relating cities, implemented policies, and city features, and formulate the policy recommendation task as a GNN link prediction problem, demonstrating its potential to scale data-driven urban governance.
Date issued
2025-05
URI
https://hdl.handle.net/1721.1/162992
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.