Show simple item record

dc.contributor.authorKatz, Gabriel
dc.date.accessioned2025-10-03T16:22:01Z
dc.date.available2025-10-03T16:22:01Z
dc.date.issued2025-06-24
dc.identifier.urihttps://hdl.handle.net/1721.1/162887
dc.description.abstract: Let Y be a smooth compact n-manifold. We studied smooth embeddings and immersions β : M → R × Y of compact n-manifolds M such that β(M) avoids some priory chosen closed poset Θ of tangent patterns to the fibers of the obvious projection π : R × Y → Y. Then, for a fixed Y, we introduced an equivalence relation between such β’s; creating a crossover between pseudo-isotopies and bordisms. We called this relation quasitopy. In the presented study of quasitopies, the spaces P cΘ d of real univariate polynomials of degree d with real divisors, whose combinatorial patterns avoid a given closed poset Θ, play the classical role of Grassmanians. We computed the quasitopy classes Qemb d (Y, cΘ) of Θ-constrained embeddings β in terms of homotopy/homology theory of spaces Y and P cΘ d . We proved also that the quasitopies of embeddings stabilize, as d → ∞.en_US
dc.publisherMultidisciplinary Digital Publishing Instituteen_US
dc.relation.isversionofhttp://dx.doi.org/10.3390/ijt2030009en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceMultidisciplinary Digital Publishing Instituteen_US
dc.titleSpaces of Polynomials as Grassmanians for Immersions and Embeddingsen_US
dc.typeArticleen_US
dc.identifier.citationKatz, G. Spaces of Polynomials as Grassmanians for Immersions and Embeddings. Int. J. Topol. 2025, 2, 9.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalInternational Journal of Topologyen_US
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2025-09-26T14:04:33Z
dspace.date.submission2025-09-26T14:04:33Z
mit.journal.volume2en_US
mit.journal.issue3en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record