MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Power in Numbers: Harnessing Combinatorial and Integrated Screens to Advance Nanomedicine

Author(s)
Boehnke, Natalie; Hammond, Paula T
Thumbnail
DownloadPublished version (2.352Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivatives https://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Nanocarriers have significant potential to advance personalized medicine through targeted drug delivery. However, to date, efforts to improve nanoparticle accumulation at target disease sites have largely failed to translate clinically, stemming from an incomplete understanding of nano-bio interactions. While progress has been made to evaluate the effects of specific physical and chemical nanoparticle properties on trafficking and uptake, there is much to be gained from controlling these properties singularly and in combination to determine their interactions with different cell types. We and others have recently begun leveraging library-based nanoparticle screens to study structure-function relationships of lipid- and polymer-based drug delivery systems to guide nanoparticle design. These combinatorial screening efforts are showing promise in leading to the successful identification of critical characteristics that yield improved and specific accumulation at target sites. However, there is a crucial need to equally consider the influence of biological complexity on nanoparticle delivery, particularly in the context of clinical translation. For example, tissue and cellular heterogeneity presents an additional dimension to nanoparticle trafficking, uptake, and accumulation; applying imaging and screening tools as well as bioinformatics may further expand our understanding of how nanoparticles engage with cells and tissues. Given recent advances in the fields of omics and machine learning, there is substantial promise to revolutionize nanocarrier development through the use of integrated screens, harnessing the combinatorial parameter space afforded both by nanoparticle libraries and clinically annotated biological data sets in combination with high throughput in vivo studies.
Date issued
2021-11-23
URI
https://hdl.handle.net/1721.1/161227
Department
Koch Institute for Integrative Cancer Research at MIT; Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
JACS Au
Publisher
American Chemical Society
Citation
Natalie Boehnke and Paula T. Hammond. JACS Au 2022 2 (1), 12-21.
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.