MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine Learning in Mode Choice Prediction as Part of MPOs’ Regional Travel Demand Models: Is It Time for Change?

Author(s)
Kalantari, Hannaneh Abdollahzadeh; Sabouri, Sadegh; Brewer, Simon; Ewing, Reid; Tian, Guang
Thumbnail
Downloadsustainability-17-03580.pdf (2.901Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
This study aims to improve the predictive accuracy of metropolitan planning organizations’ (MPOs’) travel demand models (TDM) by unraveling the factors influencing transportation mode choices. By exploring the interplay between trip characteristics, socioeconomics, built environment features, and regional conditions, we aim to address existing gaps in MPOs’ TDMs which revolve around the need to also integrate non-motorized modes and a more comprehensive array of features. Additionally, our objective is to develop a more robust predictive model compared to the current nested logit (NL) and multinomial logit (MNL) models commonly employed by MPOs. We apply a one-vs-rest random forest (RF) model to predict mode choices (Home-based-Work, Home-Based-Other, and non-home-based) for over 800,000 trips by 80,000 households across 29 US regions. Validation results demonstrate the RF model’s superior performance compared to conventional NL/MNL models. Key findings highlight that increased travel time and distance are associated with more auto trips, while household vehicle ownership significantly affects car and transit choices. Built environment features, such as activity density, transit density, and intersection density, also play crucial roles in mode preferences. This study offers a more robust predictive framework that can be directly applied in MPO TDMs, contributing to more accurate and inclusive transportation planning.
Date issued
2025-04-16
URI
https://hdl.handle.net/1721.1/159243
Department
Massachusetts Institute of Technology. Department of Urban Studies and Planning
Journal
Sustainability
Publisher
Multidisciplinary Digital Publishing Institute
Citation
Kalantari, H.A.; Sabouri, S.; Brewer, S.; Ewing, R.; Tian, G. Machine Learning in Mode Choice Prediction as Part of MPOs’ Regional Travel Demand Models: Is It Time for Change? Sustainability 2025, 17, 3580.
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.