MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Graphical house allocation with identical valuations

Author(s)
Hosseini, Hadi; McGregor, Andrew; Payan, Justin; Sengupta, Rik; Vaish, Rohit; Viswanathan, Vignesh; ... Show more Show less
Thumbnail
Download10458_2024_9672_ReferencePDF.pdf (Embargoed until: 2025-08-28, 1.108Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The classical house allocation problem involves assigning n houses (or items) to n agents according to their preferences. A key criterion in such problems is satisfying some fairness constraints such as envy-freeness. We consider a generalization of this problem, called Graphical House Allocation, wherein the agents are placed along the vertices of a graph (corresponding to a social network), and each agent can only experience envy towards its neighbors. Our goal is to minimize the aggregate envy among the agents as a natural fairness objective, i.e., the sum of the envy value over all edges in a social graph. We focus on graphical house allocation with identical valuations. When agents have identical and evenly-spaced valuations, our problem reduces to the well-studied Minimum Linear Arrangement. For identical valuations with possibly uneven spacing, we show a number of deep and surprising ways in which our setting is a departure from this classical problem. More broadly, we contribute several structural and computational results for various classes of graphs, including NP-hardness results for disjoint unions of paths, cycles, stars, cliques, and complete bipartite graphs; we also obtain fixed-parameter tractable (and, in some cases, polynomial-time) algorithms for paths, cycles, stars, cliques, complete bipartite graphs, and their disjoint unions. Additionally, a conceptual contribution of our work is the formulation of a structural property for disconnected graphs that we call splittability, which results in efficient parameterized algorithms for finding optimal allocations.
Date issued
2024-08-28
URI
https://hdl.handle.net/1721.1/159172
Department
MIT-IBM Watson AI Lab
Journal
Autonomous Agents and Multi-Agent Systems
Publisher
Springer US
Citation
Hosseini, H., McGregor, A., Payan, J. et al. Graphical house allocation with identical valuations. Auton Agent Multi-Agent Syst 38, 42 (2024).
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.