dc.contributor.author | Nguyen, Quynh T. | |
dc.contributor.author | Kiani, Bobak T. | |
dc.contributor.author | Lloyd, Seth | |
dc.date.accessioned | 2024-03-26T19:59:34Z | |
dc.date.available | 2024-03-26T19:59:34Z | |
dc.date.issued | 2022-12-13 | |
dc.identifier.issn | 2521-327X | |
dc.identifier.uri | https://hdl.handle.net/1721.1/153945 | |
dc.description.abstract | Many quantum algorithms for numerical linear algebra assume black-box access to a block-encoding of the matrix of interest, which is a strong assumption when the matrix is not sparse. Kernel matrices, which arise from discretizing a kernel function <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>k</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:msup><mml:mi>x</mml:mi><mml:mo>&#x2032;</mml:mo></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math>, have a variety of applications in mathematics and engineering. They are generally dense and full-rank. Classically, the celebrated fast multipole method performs matrix multiplication on kernel matrices of dimension <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi></mml:math> in time almost linear in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi></mml:math> by using the linear algebraic framework of hierarchical matrices. In light of this success, we propose a block-encoding scheme of the hierarchical matrix structure on a quantum computer. When applied to many physical kernel matrices, our method can improve the runtime of solving quantum linear systems of dimension <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi></mml:math> to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>O</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>&#x03BA;</mml:mi><mml:mi>polylog</mml:mi><mml:mo>&#x2061;</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:mfrac><mml:mi>N</mml:mi><mml:mi>&#x03B5;</mml:mi></mml:mfrac><mml:mo stretchy="false">)</mml:mo><mml:mo stretchy="false">)</mml:mo></mml:math>, where <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>&#x03BA;</mml:mi></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>&#x03B5;</mml:mi></mml:math> are the condition number and error bound of the matrix operation. This runtime is near-optimal and, in terms of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi></mml:math>, exponentially improves over prior quantum linear systems algorithms in the case of dense and full-rank kernel matrices. We discuss possible applications of our methodology in solving integral equations and accelerating computations in N-body problems. | en_US |
dc.language.iso | en | |
dc.publisher | Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften | en_US |
dc.relation.isversionof | 10.22331/q-2022-12-13-876 | en_US |
dc.rights | Creative Commons Attribution | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_US |
dc.source | Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften | en_US |
dc.subject | Physics and Astronomy (miscellaneous) | en_US |
dc.subject | Atomic and Molecular Physics, and Optics | en_US |
dc.title | Block-encoding dense and full-rank kernels using hierarchical matrices: applications in quantum numerical linear algebra | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Nguyen, Quynh T., Kiani, Bobak T. and Lloyd, Seth. 2022. "Block-encoding dense and full-rank kernels using hierarchical matrices: applications in quantum numerical linear algebra." Quantum, 6. | |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
dc.contributor.department | Massachusetts Institute of Technology. Department of Physics | |
dc.contributor.department | Massachusetts Institute of Technology. Research Laboratory of Electronics | |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mechanical Engineering | |
dc.relation.journal | Quantum | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2024-03-26T19:44:13Z | |
dspace.orderedauthors | Nguyen, QT; Kiani, BT; Lloyd, S | en_US |
dspace.date.submission | 2024-03-26T19:44:14Z | |
mit.journal.volume | 6 | en_US |
mit.license | PUBLISHER_CC | |
mit.metadata.status | Authority Work and Publication Information Needed | en_US |