Show simple item record

dc.contributor.authorNguyen, Quynh T.
dc.contributor.authorKiani, Bobak T.
dc.contributor.authorLloyd, Seth
dc.date.accessioned2024-03-26T19:59:34Z
dc.date.available2024-03-26T19:59:34Z
dc.date.issued2022-12-13
dc.identifier.issn2521-327X
dc.identifier.urihttps://hdl.handle.net/1721.1/153945
dc.description.abstractMany quantum algorithms for numerical linear algebra assume black-box access to a block-encoding of the matrix of interest, which is a strong assumption when the matrix is not sparse. Kernel matrices, which arise from discretizing a kernel function <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>k</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:msup><mml:mi>x</mml:mi><mml:mo>&amp;#x2032;</mml:mo></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math>, have a variety of applications in mathematics and engineering. They are generally dense and full-rank. Classically, the celebrated fast multipole method performs matrix multiplication on kernel matrices of dimension <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi></mml:math> in time almost linear in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi></mml:math> by using the linear algebraic framework of hierarchical matrices. In light of this success, we propose a block-encoding scheme of the hierarchical matrix structure on a quantum computer. When applied to many physical kernel matrices, our method can improve the runtime of solving quantum linear systems of dimension <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi></mml:math> to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>O</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>&amp;#x03BA;</mml:mi><mml:mi>polylog</mml:mi><mml:mo>&amp;#x2061;</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:mfrac><mml:mi>N</mml:mi><mml:mi>&amp;#x03B5;</mml:mi></mml:mfrac><mml:mo stretchy="false">)</mml:mo><mml:mo stretchy="false">)</mml:mo></mml:math>, where <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>&amp;#x03BA;</mml:mi></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>&amp;#x03B5;</mml:mi></mml:math> are the condition number and error bound of the matrix operation. This runtime is near-optimal and, in terms of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi></mml:math>, exponentially improves over prior quantum linear systems algorithms in the case of dense and full-rank kernel matrices. We discuss possible applications of our methodology in solving integral equations and accelerating computations in N-body problems.en_US
dc.language.isoen
dc.publisherVerein zur Forderung des Open Access Publizierens in den Quantenwissenschaftenen_US
dc.relation.isversionof10.22331/q-2022-12-13-876en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceVerein zur Forderung des Open Access Publizierens in den Quantenwissenschaftenen_US
dc.subjectPhysics and Astronomy (miscellaneous)en_US
dc.subjectAtomic and Molecular Physics, and Opticsen_US
dc.titleBlock-encoding dense and full-rank kernels using hierarchical matrices: applications in quantum numerical linear algebraen_US
dc.typeArticleen_US
dc.identifier.citationNguyen, Quynh T., Kiani, Bobak T. and Lloyd, Seth. 2022. "Block-encoding dense and full-rank kernels using hierarchical matrices: applications in quantum numerical linear algebra." Quantum, 6.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronics
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.relation.journalQuantumen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-03-26T19:44:13Z
dspace.orderedauthorsNguyen, QT; Kiani, BT; Lloyd, Sen_US
dspace.date.submission2024-03-26T19:44:14Z
mit.journal.volume6en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record