Show simple item record

dc.contributor.authorHuang, Qiangqiang
dc.contributor.authorDeGol, Joseph
dc.contributor.authorFragoso, Victor
dc.contributor.authorSinha, Sudipta N.
dc.contributor.authorLeonard, John J.
dc.date.accessioned2024-03-12T15:47:14Z
dc.date.available2024-03-12T15:47:14Z
dc.date.issued2023-05
dc.identifier.issn2377-3766
dc.identifier.issn2377-3774
dc.identifier.urihttps://hdl.handle.net/1721.1/153658
dc.description.abstractAdding fiducial markers to a scene is a well-known strategy for making visual localization algorithms more robust. Traditionally, these marker locations are selected by humans who are familiar with visual localization techniques. This paper explores the problem of automatic marker placement within a scene. Specifically, given a predetermined set of markers and a scene model, we compute optimized marker positions within the scene that can improve accuracy in visual localization. Our main contribution is a novel framework for modeling camera localizability that incorporates both natural scene features and artificial fiducial markers added to the scene. We present optimized marker placement (OMP), a greedy algorithm that is based on the camera localizability framework. We have also designed a simulation framework for testing marker placement algorithms on 3D models and images generated from synthetic scenes. We have evaluated OMP within this testbed and demonstrate an improvement in the localization rate by up to 20 percent on four different scenes.en_US
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionof10.1109/lra.2023.3260700en_US
dc.rightsCreative Commons Attribution-Noncommercial-ShareAlikeen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourcearxiven_US
dc.subjectArtificial Intelligenceen_US
dc.subjectControl and Optimizationen_US
dc.subjectComputer Science Applicationsen_US
dc.subjectComputer Vision and Pattern Recognitionen_US
dc.subjectMechanical Engineeringen_US
dc.subjectHuman-Computer Interactionen_US
dc.subjectBiomedical Engineeringen_US
dc.subjectControl and Systems Engineeringen_US
dc.titleOptimizing Fiducial Marker Placement for Improved Visual Localizationen_US
dc.typeArticleen_US
dc.identifier.citationQ. Huang, J. DeGol, V. Fragoso, S. N. Sinha, and J. J. Leonard, “Optimizing Fiducial Marker Placement for Improved Visual Localization”, IEEE Robotics and Automation Letters (RA-L), 2023.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.relation.journalIEEE Robotics and Automation Lettersen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-03-12T15:30:55Z
dspace.orderedauthorsHuang, Q; DeGol, J; Fragoso, V; Sinha, SN; Leonard, JJen_US
dspace.date.submission2024-03-12T15:31:00Z
mit.journal.volume8en_US
mit.journal.issue5en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record