Show simple item record

dc.contributor.advisorAlizadeh, Mohammad
dc.contributor.authorHamadanian, Pouya
dc.date.accessioned2022-06-15T13:17:32Z
dc.date.available2022-06-15T13:17:32Z
dc.date.issued2022-02
dc.date.submitted2022-03-04T20:59:52.765Z
dc.identifier.urihttps://hdl.handle.net/1721.1/143390
dc.description.abstractRecent research has turned to Reinforcement Learning (RL) to solve challenging decision problems, as an alternative to hand-tuned heuristics. RL can learn good policies without the need for modeling the environment's dynamics. Despite this promise, RL remains an impractical solution for many real-world systems problems. A particularly challenging case occurs when the environment changes over time, i.e. it exhibits non-stationarity. In this work, we characterize the challenges introduced by non-stationarity and develop a framework for addressing them to train RL agents in live systems. Such agents must explore and learn new environments, without hurting the system's performance, and remember them over time. To this end, our framework (1) identifies different environments encountered by the live system, (2) explores and trains a separate expert policy for each environment, and (3) employs safeguards to protect the system's performance. We apply our framework to two systems problems: straggler mitigation and adaptive video streaming, and evaluate it against a variety of alternative approaches using real-world and synthetic data. We show that each component of our framework is necessary to cope with non-stationarity.
dc.publisherMassachusetts Institute of Technology
dc.rightsIn Copyright - Educational Use Permitted
dc.rightsCopyright MIT
dc.rights.urihttp://rightsstatements.org/page/InC-EDU/1.0/
dc.titleReinforcement Learning in Time-Varying Systems: an Empirical Study
dc.typeThesis
dc.description.degreeS.M.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.orcidhttps://orcid.org/0000-0002-6364-4108
mit.thesis.degreeMaster
thesis.degree.nameMaster of Science in Electrical Engineering and Computer Science


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record