Show simple item record

dc.contributor.authorZhang, Liang
dc.contributor.authorLi, Weiqiang
dc.contributor.authorZhang, Lenan
dc.contributor.authorZhong, Yang
dc.contributor.authorGuo, Xiao
dc.contributor.authorLi, Long
dc.contributor.authorWang, Evelyn N
dc.contributor.authorGuo, Liang
dc.date.accessioned2022-01-28T21:22:58Z
dc.date.available2022-01-28T20:01:26Z
dc.date.available2022-01-28T21:22:58Z
dc.date.issued2020-08
dc.date.submitted2020-05
dc.identifier.issn1089-7550
dc.identifier.issn0021-8979
dc.identifier.urihttps://hdl.handle.net/1721.1/139792.2
dc.description.abstract© 2020 Author(s). The time-domain thermoreflectance (TDTR) technique has been widely used to measure thermal properties. The design and interpretation of the TDTR experiment rely on an in-depth understanding of the thermoreflectance signature for a given metal thermal transducer. Although the TDTR signals of several metal thermal transducers have been experimentally investigated, a practical framework bridging the electronic properties and the thermoreflectance characteristics of metal thermal transducers will be helpful for future studies. Compiling published results and our analysis and tests, in this work, we show a theoretical strategy to determine the thermallyinduced change of reflectance spectra with the electronic properties of metal transducers as the input. As a natural consequence of the proposed framework, we show that the optimal probe photon energy occurs near the interband transition threshold of the metal. To validate our approach, TDTR experiments are performed with Au and Cu as two representative metal thermal transducers in two temporal regimes when electrons and lattices have different temperatures (<10 ps) and reach thermal equilibrium (>10 ps), respectively. The experimental results show good agreement with the theory. The work fundamentally elucidates the thermally induced optical response of metal thermal transducers and also provides practical guidelines for choosing the appropriate probe photon energy to optimize the TDTR signal for a given metal thermal transducer, which is useful for broadening the adaptability of TDTR to various experimental conditions, materials, and new laser sources.en_US
dc.language.isoen
dc.publisherAIP Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1063/5.0015586en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceOther repositoryen_US
dc.titleFramework for analyzing the thermoreflectance spectra of metal thermal transducers with spectrally tunable time-domain thermoreflectanceen_US
dc.typeArticleen_US
dc.identifier.citationZhang, Liang, Li, Weiqiang, Zhang, Lenan, Zhong, Yang, Guo, Xiao et al. 2020. "Framework for analyzing the thermoreflectance spectra of metal thermal transducers with spectrally tunable time-domain thermoreflectance." Journal of Applied Physics, 128 (5).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.contributor.departmentMassachusetts Institute of Technology. Device Research Laboratory
dc.relation.journalJournal of Applied Physicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-01-28T19:58:51Z
dspace.orderedauthorsZhang, L; Li, W; Zhang, L; Zhong, Y; Guo, X; Li, L; Wang, EN; Guo, Len_US
dspace.date.submission2022-01-28T19:58:53Z
mit.journal.volume128en_US
mit.journal.issue5en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version