Show simple item record

dc.contributor.authorNguyen, Tam N.T.
dc.contributor.authorSha, Sha
dc.contributor.authorHong, Moo Sun
dc.contributor.authorMaloney, Andrew J.
dc.contributor.authorBarone, Paul W.
dc.contributor.authorNeufeld, Caleb
dc.contributor.authorWolfrum, Jacqueline
dc.contributor.authorSprings, Stacy L.
dc.contributor.authorSinskey, Anthony J.
dc.contributor.authorBraatz, Richard D.
dc.date.accessioned2022-02-10T23:21:00Z
dc.date.available2021-10-27T20:24:01Z
dc.date.available2022-02-10T23:21:00Z
dc.date.issued2021-06
dc.date.submitted2020-12
dc.identifier.issn2329-0501
dc.identifier.issn2329-0501
dc.identifier.urihttps://hdl.handle.net/1721.1/135559.2
dc.description.abstractManufacturing of recombinant adeno-associated virus (rAAV) viral vectors remains challenging, with low yields and low full:empty capsid ratios in the harvest. To elucidate the dynamics of recombinant viral production, we develop a mechanistic model for the synthesis of rAAV viral vectors by triple plasmid transfection based on the underlying biological processes derived from wild-type AAV. The model covers major steps starting from exogenous DNA delivery to the reaction cascade that forms viral proteins and DNA, which subsequently result in filled capsids, and the complex functions of the Rep protein as a regulator of the packaging plasmid gene expression and a catalyst for viral DNA packaging. We estimate kinetic parameters using dynamic data from literature and in-house triple transient transfection experiments. Model predictions of productivity changes as a result of the varied input plasmid ratio are benchmarked against transfection data from the literature. Sensitivity analysis suggests that (1) the poorly coordinated timeline of capsid synthesis and viral DNA replication results in a low ratio of full virions in harvest, and (2) repressive function of the Rep protein could be impeding capsid production at a later phase. The analyses from the mathematical model provide testable hypotheses for evaluation and reveal potential process bottlenecks that can be investigated.en_US
dc.language.isoen
dc.publisherElsevier BVen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.omtm.2021.04.006en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceElsevieren_US
dc.titleMechanistic model for production of recombinant adeno-associated virus via triple transfection of HEK293 cellsen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineering
dc.contributor.departmentMassachusetts Institute of Technology. Center for Biomedical Innovation
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biology
dc.relation.journalMolecular Therapy - Methods & Clinical Developmenten_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-08-02T18:14:29Z
dspace.orderedauthorsNguyen, TNT; Sha, S; Hong, MS; Maloney, AJ; Barone, PW; Neufeld, C; Wolfrum, J; Springs, SL; Sinskey, AJ; Braatz, RDen_US
dspace.date.submission2021-08-02T18:14:31Z
mit.journal.volume21en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version