Notice

This is not the latest version of this item. The latest version can be found at:https://dspace.mit.edu/handle/1721.1/135360.2

Show simple item record

dc.date.accessioned2021-10-27T20:23:08Z
dc.date.available2021-10-27T20:23:08Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/1721.1/135360
dc.description.abstract© This open access article is distributed under Creative Commons Attribution-NonCommercialNoDerivatives License 4.0 (CC BY-NC-ND). How predictable are life trajectories? We investigated this question with a scientific mass collaboration using the common task method; 160 teams built predictive models for six life outcomes using data from the Fragile Families and Child Wellbeing Study, a high-quality birth cohort study. Despite using a rich dataset and applying machine-learning methods optimized for prediction, the best predictions were not very accurate and were only slightly better than those from a simple benchmark model. Within each outcome, prediction error was strongly associated with the family being predicted and weakly associated with the technique used to generate the prediction. Overall, these results suggest practical limits to the predictability of life outcomes in some settings and illustrate the value of mass collaborations in the social sciences.
dc.language.isoen
dc.publisherProceedings of the National Academy of Sciences
dc.relation.isversionof10.1073/PNAS.1915006117
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs License
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcePNAS
dc.titleMeasuring the predictability of life outcomes with a scientific mass collaboration
dc.typeArticle
dc.relation.journalProceedings of the National Academy of Sciences of the United States of America
dc.eprint.versionFinal published version
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/PeerReviewed
dc.date.updated2021-02-02T18:52:00Z
dspace.orderedauthorsSalganik, MJ; Lundberg, I; Kindel, AT; Ahearn, CE; Al-Ghoneim, K; Almaatouq, A; Altschul, DM; Brand, JE; Carnegie, NB; Compton, RJ; Datta, D; Davidson, T; Filippova, A; Gilroy, C; Goode, BJ; Jahani, E; Kashyap, R; Kirchner, A; McKay, S; Morgan, AC; Pentland, A; Polimis, K; Raes, L; Rigobon, DE; Roberts, CV; Stanescu, DM; Suhara, Y; Usmani, A; Wang, EH; Adem, M; Alhajri, A; AlShebli, B; Amin, R; Amos, RB; Argyle, LP; Baer-Bositis, L; Büchi, M; Chung, B-R; Eggert, W; Faletto, G; Fan, Z; Freese, J; Gadgil, T; Gagné, J; Gao, Y; Halpern-Manners, A; Hashim, SP; Hausen, S; He, G; Higuera, K; Hogan, B; Horwitz, IM; Hummel, LM; Jain, N; Jin, K; Jurgens, D; Kaminski, P; Karapetyan, A; Kim, EH; Leizman, B; Liu, N; Möser, M; Mack, AE; Mahajan, M; Mandell, N; Marahrens, H; Mercado-Garcia, D; Mocz, V; Mueller-Gastell, K; Musse, A; Niu, Q; Nowak, W; Omidvar, H; Or, A; Ouyang, K; Pinto, KM; Porter, E; Porter, KE; Qian, C; Rauf, T; Sargsyan, A; Schaffner, T; Schnabel, L; Schonfeld, B; Sender, B; Tang, JD; Tsurkov, E; van Loon, A; Varol, O; Wang, X; Wang, Z; Wang, J; Wang, F; Weissman, S; Whitaker, K; Wolters, MK; Woon, WL; Wu, J; Wu, C; Yang, K; Yin, J; Zhao, B; Zhu, C; Brooks-Gunn, J; Engelhardt, BE; Hardt, M; Knox, D; Levy, K; Narayanan, A; Stewart, BM; Watts, DJ; McLanahan, S
dspace.date.submission2021-02-02T18:52:02Z
mit.journal.volume117
mit.journal.issue15
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version