Show simple item record

dc.contributor.authorTao, James
dc.date.accessioned2021-09-20T17:41:49Z
dc.date.available2021-09-20T17:41:49Z
dc.date.issued2021-01-05
dc.identifier.urihttps://hdl.handle.net/1721.1/132077
dc.description.abstractAbstract Let X be a smooth algebraic variety over k. We prove that any flat quasicoherent sheaf on $${\text {Ran}}(X)$$ Ran ( X ) canonically acquires a $$\mathscr {D}$$ D -module structure. In addition, we prove that, if the geometric fiber $$X_{\overline{k}}$$ X k ¯ is connected and admits a smooth compactification, then any line bundle on $$S \times {\text {Ran}}(X)$$ S × Ran ( X ) is pulled back from S, for any locally Noetherian k-scheme S. Both theorems rely on a family of results which state that the (partial) limit of an n-excisive functor defined on the category of pointed finite sets is trivial.en_US
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00029-020-00611-4en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer International Publishingen_US
dc.titlen-Excisive functors, canonical connections, and line bundles on the Ran spaceen_US
dc.typeArticleen_US
dc.identifier.citationSelecta Mathematica. 2021 Jan 05;27(1):2en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-03-26T04:35:26Z
dc.language.rfc3066en
dc.rights.holderSpringer Nature Switzerland AG
dspace.embargo.termsY
dspace.date.submission2021-03-26T04:35:25Z
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record