MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Energy-time optimal path planning in strong dynamic flows

Author(s)
Doshi, Manan(Manan Mukesh)
Thumbnail
Download1251767814-MIT.pdf (5.191Mb)
Other Contributors
Massachusetts Institute of Technology. Center for Computational Science & Engineering.
Advisor
Pierre F.J. Lermusiaux.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We develop an exact partial differential equation-based methodology that predicts time-energy optimal paths for autonomous vehicles navigating in dynamic environments. The differential equations solve the multi-objective optimization problem of navigating a vehicle autonomously in a dynamic flow field to any destination with the goal of minimizing travel time and energy use. Based on Hamilton-Jacobi theory for reachability and the level set method, the methodology computes the exact Pareto optimal solutions to the multi-objective path planning problem, numerically solving the equations governing time-energy reachability fronts and optimal paths. Our approach is applicable to path planning in various scenarios, however we primarily present examples of navigating in dynamic marine environments. First, we validate the methodology through a benchmark case of crossing a steady front (a highway flow) for which we compare our results to semi-analytical optimal path solutions. We then consider more complex unsteady environments and solve for time-energy optimal missions in a quasi-geostrophic double-gyre ocean flow field.
Description
Thesis: S.M., Massachusetts Institute of Technology, Center for Computational Science & Engineering, February, 2021
 
Cataloged from the official PDF version of thesis.
 
Includes bibliographical references (pages 55-61).
 
Date issued
2021
URI
https://hdl.handle.net/1721.1/130905
Department
Massachusetts Institute of Technology. Center for Computational Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Computational Science, Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.