Show simple item record

dc.contributor.authorSnow, W. M.
dc.contributor.authorApanavicius, J.
dc.contributor.authorDickerson, K. A.
dc.contributor.authorDevaney, J. S.
dc.contributor.authorDrabek, H.
dc.contributor.authorReid, A.
dc.contributor.authorShen, B.
dc.contributor.authorWoo, J.
dc.contributor.authorHaddock, C.
dc.contributor.authorAlexeev, E.
dc.contributor.authorPeters, M.
dc.date.accessioned2020-06-15T19:45:54Z
dc.date.available2020-06-15T19:45:54Z
dc.date.issued2020-03
dc.date.submitted2019-10
dc.identifier.issn2470-0010
dc.identifier.issn2470-0029
dc.identifier.urihttps://hdl.handle.net/1721.1/125809
dc.description.abstractMany theories beyond the Standard Model postulate short-range modifications to gravity which produce deviations of Newton’s gravitational potential from a strict 1/r dependence. It is common to analyze experiments searching for these modifications using a potential of the form V^{′}(r)=-GMm/r[1+αexp(-r/λ)]. The best present constraints on α for λ<100  nm come from neutron scattering and often employ comparisons of different measurements of the coherent neutron scattering amplitudes b. We analyze the internal consistency of existing data from two different types of measurements of low-energy neutron scattering amplitudes: neutron interferometry, which involves squared momentum transfers q^{2}=0, and neutron gravity reflectometry, which involves squared momentum transfers q^{2}=8mV_{opt} where m is the neutron mass and V_{opt} is the neutron optical potential of the medium. We show that the fractional difference Δb/|b| averaged over the seven elements where high precision data exist on the same material from both measurement methods is [2.2±1.4]×10^{-4}. We also show that Δb/|b| for these data is insensitive both to exotic Yukawa interactions and also to the electromagnetic neutron-atom interactions proportional to the neutron-electron scattering length b_{ne} and the neutron polarizability scattering amplitude b_{pol}. This result will be useful in any future global analyses of neutron scattering data to determine b_{ne} and bound α and λ. We also discuss how various neutron interferometric and scattering techniques with cold and ultracold neutrons can be used to improve the precision of b measurements and make some specific proposals.en_US
dc.description.sponsorshipU.S. National Science Foundation Grant No. PHY-1614545en_US
dc.publisherAmerican Physical Society (APS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevD.101.062004en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Physical Societyen_US
dc.titleInternal consistency of neutron coherent scattering length measurements from neutron interferometry and from neutron gravity reflectometryen_US
dc.typeArticleen_US
dc.identifier.citationSnow, W. M. et al. "Internal consistency of neutron coherent scattering length measurements from neutron interferometry and from neutron gravity reflectometry." Physical Review D, 101, 6 (March 2020): 062004. © 2020 American Physical Societyen_US
dc.relation.journalPhysical Review Den_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-03-25T15:02:27Z
dc.language.rfc3066en
dc.rights.holderAmerican Physical Society
dspace.date.submission2020-03-25T15:02:27Z
mit.journal.volume101en_US
mit.journal.issue6en_US
mit.licensePUBLISHER_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record