Show simple item record

dc.contributor.authorKim, Young Duck
dc.contributor.authorGao, Yuanda
dc.contributor.authorShiue, Ren-Jye
dc.contributor.authorWang, Lei
dc.contributor.authorAslan, Ozgur
dc.contributor.authorBae, Myung-Ho
dc.contributor.authorKim, Hyungsik
dc.contributor.authorSeo, Dongjea
dc.contributor.authorChoi, Heon-Jin
dc.contributor.authorKim, Suk Hyun
dc.contributor.authorNemilentsau, Andrei
dc.contributor.authorLow, Tony
dc.contributor.authorTan, Cheng Hock
dc.contributor.authorEfetov, Dmitri
dc.contributor.authorTaniguchi, Takashi
dc.contributor.authorWatanabe, Kenji
dc.contributor.authorShepard, Kenneth L.
dc.contributor.authorHeinz, Tony F.
dc.contributor.authorEnglund, Dirk R.
dc.contributor.authorHone, James
dc.date.accessioned2019-11-12T19:54:46Z
dc.date.available2019-11-12T19:54:46Z
dc.date.issued2018-01-22
dc.date.submitted2017-10
dc.identifier.issn1530-6984
dc.identifier.issn1530-6992
dc.identifier.urihttps://hdl.handle.net/1721.1/122921
dc.description.abstractUltrafast electrically driven nanoscale light sources are critical components in nanophotonics. Compound semiconductor-based light sources for the nanophotonic platforms have been extensively investigated over the past decades. However, monolithic ultrafast light sources with a small footprint remain a challenge. Here, we demonstrate electrically driven ultrafast graphene light emitters that achieve light pulse generation with up to 10 GHz bandwidth across a broad spectral range from the visible to the near-infrared. The fast response results from ultrafast charge-carrier dynamics in graphene and weak electron-acoustic phonon-mediated coupling between the electronic and lattice degrees of freedom. We also find that encapsulating graphene with hexagonal boron nitride (hBN) layers strongly modifies the emission spectrum by changing the local optical density of states, thus providing up to 460% enhancement compared to the gray-body thermal radiation for a broad peak centered at 720 nm. Furthermore, the hBN encapsulation layers permit stable and bright visible thermal radiation with electronic temperatures up to 2000 K under ambient conditions as well as efficient ultrafast electronic cooling via near-field coupling to hybrid polaritonic modes under electrical excitation. These high-speed graphene light emitters provide a promising path for on-chip light sources for optical communications and other optoelectronic applications. Keywords: graphene; ultrafast light emitter; thermal radiation; van der Waals heterostructure; optoelectronicsen_US
dc.description.sponsorshipUnited States. Department of Energy. Office of Basic Energy Sciences (award DE-SC0001088)en_US
dc.language.isoen
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionofhttps://doi.org/10.1021/acs.nanolett.7b04324en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcearXiven_US
dc.subjectMechanical Engineeringen_US
dc.subjectGeneral Materials Scienceen_US
dc.subjectBioengineeringen_US
dc.subjectGeneral Chemistryen_US
dc.subjectCondensed Matter Physicsen_US
dc.titleUltrafast Graphene Light Emittersen_US
dc.typeArticleen_US
dc.identifier.citationYoung Duck Kim et al. "Ultrafast Graphene Light Emitters." Nano Letters 18, 2 (January 2018): 934-940 © 2018 American Chemical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.relation.journalNano Lettersen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-06-14T15:40:26Z
dspace.date.submission2019-06-14T15:40:28Z
mit.journal.volume18en_US
mit.journal.issue2en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record