MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

3-dimensional autostereoscopic displays with 4K televisions

Author(s)
Van Belleghem, Emily M
Thumbnail
DownloadFull printable version (33.51Mb)
Alternative title
Three-dimensional autostereoscopic displays with 4K televisions
3-D autostereoscopic displays with 4K televisions
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
V. Michael Bove.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis report presents the research conducted over the course of Fall 2016 through Fall 2017 in regards to 3-Dimensional autostereoscopic light fields. It includes work from a senior project called 6.UAP and a Masters of Engineering thesis called the MEng. In the 6.UAP senior project, combination methods for autostereoscopic 3D displays on high definition screens were explored by integrating a Pepper's Ghost effect (using a trapezoidal prism) with 3D integral imaging (using a lenticular array). In the MEng thesis the complexity of the illusion was increased by utilizing a cone in place of a trapezoidal prism, and a radial parallax barrier in place of a lenticular array. This created a light field with a field of view of about 40 degrees and appeared 3D when perspective was shifted from left to right. The results of this project proved 3D autostereoscopic displays with radial parallax barriers were possible and merit future work in the area of radial lenticular arrays and parallax barriers..
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 53-55).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/119556
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.