Show simple item record

dc.contributor.advisorAntonio Torralba.en_US
dc.contributor.authorOktay, Deniz, M. Eng. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2018-12-11T20:39:16Z
dc.date.available2018-12-11T20:39:16Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/119538
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 51-54).en_US
dc.description.abstractA key limitation of semantic image segmentation approaches is that they require large amounts of densely labeled training data. In this thesis, we introduce a method to learn to segment images with unlabeled data. The intuition behind the approach is that removing objects from images will yield natural images, however removing random patches will yield unnatural images. We capitalize on this signal to develop an auto-encoder that decomposes an image into layers, and when all layers are combined, it reconstructs the input image. However, when a layer is removed, the model learns to produce a different image that still looks natural to an adversary, which is possible by removing objects. Experiments and visualizations suggest that this model automatically learns to segment objects in images better than baselines. Some parts of this thesis represent joint work with Dr. Carl Vondrick and Professor Antonio Torralba.en_US
dc.description.statementofresponsibilityby Deniz Oktay.en_US
dc.format.extent54 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleObject discovery via layer disposalen_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc1076269771en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record